cho phương trình:x2- 2(m-1)X-3-m=0 .chứng minh phương trình luôn có nghiệm với mọi m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+\left(m+2\right)x+m-1\)
\(\Delta=b^2-4ac=\left(m+2\right)^2-4.1.\left(m-1\right)\)
\(=m^2+4m+4-4m+4\)
\(=m^2+8\)
Vì \(m^2\ge0\forall m\Rightarrow m^2+8\ge8>0\forall m\Rightarrow\Delta>0\forall m\)
Vậy phương trình luôn có hai nghiệm phân biệt với mọi m
Áp dụng hệ thức vi-ét ta có:
\(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=-\left(m+2\right)\\x_1x_2=\frac{c}{a}=m-1\end{cases}}\)
Theo bài ra ta có:
\(A=x_1^2+x_2^2-3x_1x_2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2-3x_1x_2\)
\(=\left(x_1+x_2\right)^2-5x_1x_2\)
Đến đây dễ r:)
Xét pt cho là pt bậc hai một ẩn $x$ ( Với $a=1 \neq 0, b=-2(m-1), c = m-3$ )
Ta có : \(\Delta'=b'^2-ac\)
\(=\left[-\left(m-1\right)\right]^2-\left(m-3\right)\cdot1\)
\(=m^2-2m+1-m+3\)
\(=m^2-3m+4=\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\)
Nên pt cho luôn có hai nghiệm phân biệt \(\forall m\)
b) Δ = m - 2 2 -4.(-m + 1) = m 2 - 4m + 4 + 4m - 4 = m 2 ≥ 0 ∀ m
⇒ Phương trình đã cho luôn có nghiệm với mọi m
1.
Đặt \(f\left(x\right)=\left(m^2+1\right)x^3-2m^2x^2-4x+m^2+1\)
\(f\left(x\right)\) xác định và liên tục trên R
\(f\left(x\right)\) có bậc 3 nên có tối đa 3 nghiệm (1)
\(f\left(0\right)=m^2+1>0\) ; \(\forall m\)
\(f\left(1\right)=\left(m^2+1\right)-2m^2-4+m^2+1=-2< 0\) ;\(\forall m\)
\(\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;1\right)\) (2)
\(f\left(2\right)=8\left(m^2+1\right)-8m^2-8+m^2+1=m^2+1>0\)
\(\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(1;2\right)\) (3)
\(f\left(-3\right)==-27\left(m^2+1\right)-18m^2+12+m^2+1=-44m^2-14< 0\)
\(\Rightarrow f\left(-3\right).f\left(0\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-3;0\right)\) (4)
Từ (1); (2); (3); (4) \(\Rightarrow f\left(x\right)=0\) có đúng 3 nghiệm phân biệt
2.
Đặt \(t=g\left(x\right)=x.cosx\)
\(g\left(x\right)\) liên tục trên R và có miền giá trị bằng R \(\Rightarrow t\in\left(-\infty;+\infty\right)\)
\(f\left(t\right)=t^3+m\left(t-1\right)\left(t+2\right)\)
Hàm \(f\left(t\right)\) xác định và liên tục trên R
\(f\left(1\right)=1>0\)
\(f\left(-2\right)=-8< 0\)
\(\Rightarrow f\left(1\right).f\left(-2\right)< 0\Rightarrow f\left(t\right)=0\) luôn có ít nhất 1 nghiệm thuộc \(\left(-2;1\right)\)
\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm với mọi m
\(\Delta=\left(m+1\right)^2-4\left(2m-2\right)=m^2-6m+9=\left(m-3\right)^2\ge0\) ; \(\forall m\)
\(\Rightarrow\) Phương trình luôn có nghiệm với mọi m
\(a,Thaym=3.vào.\left(1\right),ta.được:x^2+5x+4=0\\ \Leftrightarrow x^2+x+4x+4=0\\ \Leftrightarrow x\left(x+1\right)+4\left(x+1\right)=0\\ \Leftrightarrow\left(x+4\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\\ Vậy:S=\left\{-1;-4\right\}\\ b,\Delta=\left(m+2\right)^2-4.1.\left(m+1\right)=m^2+4m+4-4m-4=m^2\ge0\forall m\in R\\ \)
Lời giải:
Ta có:
$\Delta=(2m+1)^2-4(m^2+m-1)=5>0$ với mọi $m\in\mathbb{R}$
Do đó pt luôn có nghiệm với mọi $m\in\mathbb{R}$
Δ=(2m-4)^2-4(2m-5)
=4m^2-16m+16-8m+20
=4m^2-24m+36
=4m^2-2*2m*6+36=(2m-6)^2>=0
=>Phương trình luôn có nghiệm
\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-3\right)=4>0\) ;\(\forall m\ne-1\)
\(\Rightarrow\) Pt luôn có 2 nghiệm pb với mọi \(m\ne-1\)