a=2+3
a=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{3a+1}{a^2-3a}+\frac{3a-1}{a^2+3a}\right)\):\(\frac{a^2+1}{a^2-9}\)
=\(\left[\frac{3a+1}{a\left(a-3\right)}+\frac{3a-1}{a\left(a+3\right)}\right]\): \(\frac{a^2+1}{\left(a-3\right)\left(a+3\right)}\)
=\(\left[\frac{\left(3a+1\right)\left(a+3\right)}{a\left(a-3\right)\left(a+3\right)}+\frac{\left(3a-1\right)\left(a-3\right)}{a\left(a+3\right)\left(a-3\right)}\right]\): \(\frac{a^2+1}{\left(a-3\right)\left(a+3\right)}\)
=\(\frac{3a^2+9a+a+3+3a^2-9a-a+3}{a\left(a-3\right)\left(a+3\right)}\): \(\frac{a^2+1}{\left(a-3\right)\left(a+3\right)}\)
=\(\frac{6a^2+6}{a\left(a-3\right)\left(a+3\right)}\): \(\frac{a^2+1}{\left(a-3\right)\left(a+3\right)}\)
=\(\frac{6\left(a^2+1\right)}{a\left(a-3\right)\left(a+3\right)}\).\(\frac{\left(a-3\right)\left(a+3\right)}{a^2+1}\)
=\(\frac{6}{a}\)
a: \(A=\left(a+1\right)^3=10^3=1000\)
b: \(B=\left(x+1\right)^3=20^3=8000\)
c: \(C=a^3+3a^2+3a+1+5\)
\(=30^3+5=27005\)
a) \(\frac{2a-9}{2a-5}+\frac{3a}{3a-2}=2\)
<=> (2a - 9)(3a - 2) + 3a(2a - 5) = 2(2a - 5)(3a - 2)
<=> 6a2 - 4a - 27a + 16 + 6a2 - 15a = 12a2 - 8a - 30a + 20
<=> 12a2 - 44a + 16 = 12a2 - 38a + 20
<=> 12a2 - 44a + 16 - 12a2 = -38a + 20
<=> -44a + 16 = -36a + 20
<=> -44a + 16 + 36a = 20
<=> -8a + 16 = 20
<=> -8a = 20 - 16
<=> -8a = 4
<=> a = -4/8 = -1/2
b) nhân chéo và làm tương tự
a: \(A=x^2-10x+25+1\)
\(=\left(x-5\right)^2+1\)
\(=100^2+1=10001\)
b: \(B=2\left(a^2+a-5a-5\right)-\left(a^2-10a+25\right)+36\)
\(=2a^2-8a-10-a^2+10a-25+36\)
\(=a^2+2a+1\)
\(=\left(a+1\right)^2=100^2=10000\)
c: \(C=a^3+3a^2+3a+1=\left(a+1\right)^3=100^3=1000000\)
d: \(E=a^3+3a^2+3a+1+5\)
\(=\left(a+1\right)^3+5\)
\(=30^3+5=27005\)
a) a3 + 1 + 3a + 3a2 = ( a + 1)3 = 102 = 100
b) x3 + 3x2 + 3x + 1 = ( x + 1)3 = 203 = 8000 ( sửa đề)
c) a3 + 3a2 + 3a + 6 = a3 + 3a2 + 3a + 1 + 5 = ( a + 1)3 + 5 = 27005
d) a3 - 3a2 + 3a - 1 = ( a - 1)3 = 1003 = 1000000 ( sửa đề )
a = 2 + 3
a = 5
a=5 ai k minh k lai nha