Qua thấu kính hội tụ vật AB vuông góc với trục chính của thấu kính,A nằm trên trục chính cho ảnh A'B'=1/3AB. Ảnh này cách F' một đoạn A'F'=10cm
a: Vẽ ảnh của vật
b; dựa vào hình vẽ tính d,d',f'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: B
Giữa độ bội giác và tiêu cự f (đo bằng cm) có hệ thức:
Đáp án cần chọn là: D
Ta có công thức thấu kính:
1 d + 1 d ' = 1 f ⇒ 1 20 + 1 d ' = 1 10 ⇒ d ' = 20 c m
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{20}=\dfrac{1}{30}+\dfrac{1}{d'}\Leftrightarrow d'=60cm\)
Độ cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{2}{h'}=\dfrac{30}{60}\Rightarrow h'=4cm\)
Ảnh ảo, ngược chiều và nhỏ hơn vật.
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{8}=\dfrac{1}{15}+\dfrac{1}{d'}\Rightarrow d'=\dfrac{120}{7}cm\)
Chiều cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{1}{h'}=\dfrac{15}{\dfrac{120}{7}}\Rightarrow h'=\dfrac{8}{7}cm\approx1,14cm\)
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{10}=\dfrac{1}{15}+\dfrac{1}{d'}\)
\(\Rightarrow d'=30cm\)
Độ cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{2}{h'}=\dfrac{15}{30}\Rightarrow h'=4cm\)