K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

Có ABCD là hình bình hành nên: AD // BC, AB // DC

Xét ΔBGE và ΔDGF có:

B G E ^ = D G F ^ (đối đỉnh)

E B G ^ = F D G ^ (so le trong)

=> ΔBGE ~ ΔDGF (g-g) nên C đúng

Xét ΔAHF và ΔCHE có:

A H F ^ = C H E ^ (đối đỉnh)

H A F ^ = H C E ^ (so le trong)

=> ΔAHF ~ ΔCHE (g-g) nên D đúng

Lại có GH // AB ⇒ I H G ^ = I A B ^ (đồng vị)

Xét ΔGHI và ΔBAI có

Chung I

I H G ^ = I A B ^ (cmt)

=> ΔGHI ~ ΔBAI (g-g)

Suy ra B đúng

Chỉ có A sai.

Đáp án A

30 tháng 1 2016

mình mới học lớp 8 xin lỗi cậu nhé

31 tháng 10 2021

Vì ME//AC và MF//AB nên AEMF là hbh

Mà I là trung điểm AM nên I là trung điểm EF

Do đó E đx F qua I

28 tháng 12 2023

bạn ghi lại đề đi bạn

28 tháng 12 2023

sai ở đâu sao bạn

 

18 tháng 12 2023

a: Xét ΔGAB có KC//AB

nên \(\dfrac{GC}{GB}=\dfrac{GK}{GA}\)

b: Xét ΔKAD và ΔAGB có

\(\widehat{KAD}=\widehat{AGB}\)(hai góc so le trong, DA//BC)

\(\widehat{AKD}=\widehat{GAB}\)(hai góc so le trong, DK//AB)

Do đó: ΔKAD đồng dạng với ΔAGB

=>\(\dfrac{AK}{AG}=\dfrac{AD}{GB}\)

=>\(\dfrac{AK}{AD}=\dfrac{AG}{GB}\)

=>\(\dfrac{AD}{AK}=\dfrac{BG}{GA}\)