tìm x,y để biểu thức sau đạt giá trị lớn nhất
\(M=\left(x+\frac{1}{8}\right)^{26}+\left(x-y+\frac{3}{8}\right)^{412}+5,98\)
( giúp mình với )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì:\(-\left(x+\frac{1}{8}\right)^{26}\ge0,-\left(x-y+\frac{3}{8}\right)\ge0\) nên:
\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{1}{8}=0\\x-y+\frac{3}{8}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-1}{8}\\x-y+\frac{3}{8}=0\end{matrix}\right.\)
Thay: x=\(\frac{-1}{8}\) vào x-y+\(\frac{3}{8}\) =0, ta có:
\(\frac{-1}{8}\) -y+\(\frac{3}{8}\) =0
\(\frac{-1}{8}-y=0-\frac{3}{8}\)
\(\Rightarrow\frac{-1}{8}-y=\frac{-3}{8}\)
\(\Rightarrow y=\frac{-1}{8}-\frac{-3}{8}\)
\(y=\frac{-1}{8}+\frac{3}{8}\)
\(y=\frac{2}{8}=\frac{1}{4}\)
Vậy:x=\(\frac{-1}{8}\) ,y=\(\frac{1}{4}\) thì M đạt giá trị lớn nhất bằng 5,98
CHÚC BẠN HỌC TỐT NHÉ!!!
Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)
\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)
Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)
Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất
Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
\(P=2010-\left(x+1\right)^{2008}\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)
\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)
Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)
\(\Rightarrow P=2010-0=2010\)
(Dấu"=" xảy ra <=> \(x=-1\)
Bài 2:
Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)
\(\Rightarrow C=-5\)
Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể
\(A=\frac{15\left|x+1\right|+32}{6\left|x+1\right|+8}=\frac{\frac{5}{2}\left(6\left|x+1\right|+8\right)+12}{6\left|x+1\right|+8}=\frac{5}{2}+\frac{12}{6\left|x+1\right|+8}\)
Do \(6\left|x+1\right|+8\ge8\) => \(\frac{12}{6\left|x+1\right|+8}\le\frac{12}{8}=\frac{3}{2}\)=> \(\frac{5}{2}+\frac{12}{6\left|x+1\right|+8}\le\frac{5}{2}+\frac{3}{2}=4\)
Dấu "=" xảy ra<=> x + 1 = 0 <=> x = -1
Vậy MaxA = 4 <=> x = -1