K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2019

Vì:\(-\left(x+\frac{1}{8}\right)^{26}\ge0,-\left(x-y+\frac{3}{8}\right)\ge0\) nên:

\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{1}{8}=0\\x-y+\frac{3}{8}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-1}{8}\\x-y+\frac{3}{8}=0\end{matrix}\right.\)

Thay: x=\(\frac{-1}{8}\) vào x-y+\(\frac{3}{8}\) =0, ta có:

\(\frac{-1}{8}\) -y+\(\frac{3}{8}\) =0

\(\frac{-1}{8}-y=0-\frac{3}{8}\)

\(\Rightarrow\frac{-1}{8}-y=\frac{-3}{8}\)

\(\Rightarrow y=\frac{-1}{8}-\frac{-3}{8}\)

\(y=\frac{-1}{8}+\frac{3}{8}\)

\(y=\frac{2}{8}=\frac{1}{4}\)

Vậy:x=\(\frac{-1}{8}\) ,y=\(\frac{1}{4}\) thì M đạt giá trị lớn nhất bằng 5,98

CHÚC BẠN HỌC TỐT NHÉ!!!

26 tháng 10 2019

câu đầu tiên \(\left(x-y+\frac{3}{8}\right)^{442}\) nhé bạn !!

11 tháng 7 2018

Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)

\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)

Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)

Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất

Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

11 tháng 7 2018

\(P=2010-\left(x+1\right)^{2008}\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)

\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)

Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)

\(\Rightarrow P=2010-0=2010\)

(Dấu"=" xảy ra <=> \(x=-1\)

Bài 2:

Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)

\(\Rightarrow C=-5\)

Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể

14 tháng 7 2021

\(A=\frac{15\left|x+1\right|+32}{6\left|x+1\right|+8}=\frac{\frac{5}{2}\left(6\left|x+1\right|+8\right)+12}{6\left|x+1\right|+8}=\frac{5}{2}+\frac{12}{6\left|x+1\right|+8}\)

Do \(6\left|x+1\right|+8\ge8\) => \(\frac{12}{6\left|x+1\right|+8}\le\frac{12}{8}=\frac{3}{2}\)=> \(\frac{5}{2}+\frac{12}{6\left|x+1\right|+8}\le\frac{5}{2}+\frac{3}{2}=4\)

Dấu "=" xảy ra<=> x + 1 = 0 <=> x = -1

Vậy MaxA = 4 <=> x = -1

14 tháng 7 2021

Thanks!