Cho hình bình hành ABCD (AB>CD).Phân giác của góc D cắt AB tại M . Phân giác của góc B cắt CD tại N. CMR
a.AM=CN
b.Tứ giác DMBN là hình bình hành.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADM và ΔCBN có
\(\widehat{ADM}=\widehat{CBN}\)
AD=CB
\(\widehat{A}=\widehat{C}\)
Do đó: ΔADM=ΔCBN
Suy ra: AM=CN
a: Xét ΔADN và ΔCBM có
góc A=góc C
AD=CB
góc ADN=góc CBM
=>ΔADN=ΔCBM
b: ΔADN=ΔCBM
=>AN=CM
AN+NB=AB
CM+MD=CD
mà AN=CM và AB=CD
nên NB=MD
mà NB//MD
nên NBMD là hình bình hành
c: Xét tứ giác AMCN có
AN//CM
AN=CM
=>AMCN là hình bình hành
a: Xét ΔADM và ΔCBN có
\(\widehat{ADM}=\widehat{CBN}\)
AD=CB
\(\widehat{A}=\widehat{C}\)
Do đó: ΔADM=ΔCBN
Suy ra: AM=CN
a: Xét ΔADM và ΔCBN có
\(\widehat{ADM}=\widehat{CBN}\)
AD=CB
\(\widehat{A}=\widehat{C}\)
Do đó: ΔADM=ΔCBN
Suy ra: AM=CN
phần c em để chữ đậm đó ạ chứ phần a em làm cách khác rồi, em cảm ơn ạ
Bạn tự vẽ hình nhá!!!!
a) ABCD là hình bình hành=>góc ADC=góc ABC => góc MBN=góc MDN
Mà: góc MBN= góc BNC( so le trong) => góc BNC=góc MDN => DM//BN
b) Từ phần a ta có:
Xét DMNB có DM//BN
BM//DN (do AB//CD)
=> DMNB là hbh
c) Ta có:
góc AMD= góc MDC(so le trong) => góc ADM= góc AMD=> Tam giác AMD cân tại A
Mà: AH là đường phân giác=> AH là đường cao<=> AH vuông góc với DM (1)
=>AG vuông góc với BN ( do DM//BN) (2)
Tương tự, ta cũng chứng minh được tam giác BNC cân tại C
Mà: CF là đường PG=> CF vuông góc với BN (3)
Từ (1); (2); (3) => HEFG là hcn do có 3 góc vuông
Cách 1: Tách số hạng thứ hai
x2 – 6x + 8 = x2 – 2x – 4x + 8
= x(x – 2) – 4( x – 2)
= (x – )(x – 4).
Cách 2: Tách số hạng thứ 3
x2 - 6x + 8 = x2 – 6x + 9 – 1
= (x – 3)2 – 1 = ( x – 3 – 1)(x – 3 + 1)
= (x – 4)( x – 2).
Cách 3: x2 – 6x + 8 = x2 – 4 – 6x + 12
= ( x – 2)(x + 2) – 6(x – 2)
= (x – 2)(x – 4)
Cách 4: x2 – 6x + 8 = x2 – 16 – 6x + 24
= ( x – 4)(4 + x) – 6(x – 4)
= (x – 4)( x + 4 – 6)
= (x – 4) ( x – 2).
Cách 5 : x2 – 6x + 8 = x2 – 4x + 4 – 2x + 4
= (x – 2)2 – 2( x – 2)
= (x – 2)( x – 2 – 2)
= ( x – 2)(x – 4).