So sánh :
a) 11920 và 200315
b) 10750 và 7375
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
b) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)
c) \(3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=\left(7^3\right)^{100}=343^{100}>243^{100}\)
\(\Rightarrow3^{500}< 7^{300}\)
a: 199^20=1568239201^5
2003^15=8036054027^5
=>199^20<2003^15
b: 3^99=27^33>27^21=11^21
Lời giải:
a.
$199^{20}<200^{20}=(2.100)^{20}=2^{20}.10^{40}=(2^{10})^2.10^{40}< (10^4)^2.10^{40}=10^8.10^{40}=10^{48}$
$2003^{15}> 2000^{15}=(2.10^3)^{15}=2^{15}.10^{45}> 2^{10}.10^{45}> 10^3.10^{45}=10^{48}$
$\Rightarrow 199^{20}< 2003^{15}$
b.
$3^{99}=(3^9)^{11}=19683^{11}$
$11^{21}< 11^{22}=(11^2)^{11}=121^{11}$
Hiển nhiên $19683^{11}> 121^{11}$
$\Rightarrow 3^{99}> 121^{11}> 11^{21}$
So sánh:\(10^{10}\) và \(48.50^5\)
Ta có:
\(10^{10}=10^{2.5}=\left(10^2\right)^5=100^5=\left(2.50\right)^5=2^5.50^5=32.50^5\)
Vì \(32.50^5< 48.50^5\)
\(\Rightarrow10^{10}< 48.50^5\)
`#3107.101107`
a)
`A = 2023^2` và `B = 2022*2024`
Ta có:
`A = 2023^2 = 2023*2023 = 2023*(2022 + 1) = 2023*2022 + 2023`
`B = 2022*2024 = 2022*(1 + 2023) = 2022*2023 + 2022`
Vì `2023 > 2022`
`=> 2023^2 > 2022*2024`
`=> A > B`
b)
`A=2024^2` và `B = 2023*2025`
`A = 2024^2 = 2024*2024 = 2024*(2023 + 1) = 2024*2023 + 2024`
`B = 2023*2025 = 2023*(2024 + 1) = 2023*2024 + 2023`
Vì `2024 > 2023 => 2024^2 > 2023*2025 => A > B`
Vậy, `A > B`
c)
`A = 2023*2027` và `B = 2025^2`
Ta có:
`A = 2023*(2025 + 2) = 2023*2025 + 4046`
`B = 2025^2 = 2025*2025 = 2025*(2023 + 2) = 2025*2023 + 4050`
Vì `4046 < 4050 => 2023*2027 < 2025^2 => A < B`
Vậy, `A < B`
d)
`107^50` và `73^75`
Ta có:
`107^50 = 107^(2*50) = (107^2)^25 = 11449^25`
`73^75 = 73^(3*25) = (73^3)^25 = 389017^25`
Vì `11449 < 389017 => 11449^25 < 389017^25 => 107^50 < 73^75`
Vậy, `107^50 < 73^75`
e)
`2^1993` và `7^714`
Ta có:
`2^1993 = 2^1988 * 2^5 = (2^14)^142 * 2^5 = 16384^142 * 32`
`7^714 = 7^710 * 7^4 = (7^5)^142 * 7^4 = 16807^142 * 2401`
Vì `16384 < 16807; 32 < 2401`
`=> 2^1993 < 7^714.`
bạn có thể vào trang cá nhân của mình và làm đc mấy bài mình mới đăng lên đc ko ạ? bao nhiêu bài cũng đc ạ. XIN CẢM ƠN
Mình sửa lại cơ cấu giải thưởng nhé
Giải nhất sẽ được 20GP
Giải nhì là 15GP
Giải ba sẽ là 10GP
Còn các bạn dự đoán đúng con số may mắn sẽ nhận được 5GP nhé
Giải:
a)Ta có:
C=1957/2007=1957+50-50/2007
=2007-50/2007
=2007/2007-50/2007
=1-50/2007
D=1935/1985=1935+50-50/1985
=1985-50/1985
=1985/1985-50/1985
=1-50/1985
Vì 50/2007<50/1985 nên -50/2007>-50/1985
⇒C>D
b)Ta có:
A=20162016+2/20162016-1
A=20162016-1+3/20162016-1
A=20162016-1/20162016-1+3/20162016-1
A=1+3/20162016-1
Tương tự: B=20162016/20162016-3
B=1+3/20162016-3
Vì 20162016-1>20162016-3 nên 3/20162016-1<3/20162016-3
⇒A<B
Chúc bạn học tốt!
Làm tiếp:
c)Ta có:
M=102018+1/102019+1
10M=10.(102018+1)/202019+1
10M=102019+10/102019+1
10M=102019+1+9/102019+1
10M=102019+1/102019+1 + 9/102019+1
10M=1+9/102019+1
Tương tự:
N=102019+1/102020+1
10N=1+9/102020+1
Vì 9/102019+1>9/102020+1 nên 10M>10N
⇒M>N
Chúc bạn học tốt!
kho qua ban a nhieu mu qua
\(\text{Alan Walker}\)
\(\text{Tớ thik nhất bài Faded}\)
~~~~~~~~~~~~~
~~~~~~~~~~~~