K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2018

tam giac abd đều

tam bic cân 

d la trung truc bc 

bc=? ac=?

9 tháng 4 2022

a, BA = BD (gt)

=> Δ ABD cân tại B (đn)

góc ABC = 60 (gt)

=> Δ ABD đều (dấu hiệu)

b) Ta có\(\widehat{A}\)=90 độ và\(\widehat{B}\)=60 độ =>\(\widehat{C}\)=30 độ (1)

Mà BI là phân giác của \(\widehat{B}\)=> \(\widehat{IBC}\)=30 độ(2)

từ (1) và (2) => Δ IBC cân tại I

c) xét 2 tam giác BIA và BID có: \(\widehat{A}\)+\(\widehat{AIB}\)+\(\widehat{IBA}\)+\(\widehat{IBD}\)+\(\widehat{BDI}\)+\(\widehat{DIB}\)=360 độ 

=> \(\widehat{AID}\)=120 độ

=> \(\widehat{DIC}\)=60 độ 

Xét Δ BIA và Δ CID có:

 DI=AI (Δ BIA=Δ BID)

\(\widehat{BIA}\)=\(\widehat{DIC}\)=60 độ

IB=IC(vìΔ IBC cân)

=>ΔBIA=Δ CID(c.g.c)

=> BA=CD mà BA=BD=> BD=DC

=> D là trung điểm của BC

d) vì AB=\(\dfrac{1}{2}\) BC nên BC=12 cm

Áp dụng định lí py-ta-go ta có:

BC2=AB2+AC2

=> AC2=BC2−AB2

=> AC2=144 - 36=108 cm

=> AC= \(\sqrt{108}\)(cm)

vậy BC=12 cm; AC= \(\sqrt{108}\)cm

29 tháng 3 2022

Ta có BA=BM (gt)

         ^B=60 độ 

=>ΔABM  là Δ đều

29 tháng 3 2022

xét ΔBAD và ΔBMD 

có AB=BM

   ^ABD=^MBD

  BD chnsg 

suy  ra ΔBAD =ΔBMD 

28 tháng 4 2018

(Bạn tự vẽ hình giùm)

a/ Ta có BA = BD (gt)

nên \(\Delta BAD\)cân tại B

=> \(\widehat{BAD}=\frac{180^o-\widehat{B}}{2}\)

=> \(\widehat{BAD}=\frac{180^o-60^o}{2}\)

=> \(\widehat{BAD}=\widehat{BDA}=60^o=\widehat{B}\)

=> \(\Delta BAD\)đều (đpcm)

b/ \(\Delta ABI\)và \(\Delta DBI\)có: AB = DB (gt)

\(\widehat{ABI}=\widehat{IBD}\)(BI là tia phân giác \(\widehat{B}\))

Cạnh BI chung

=> \(\Delta ABI\)\(\Delta DBI\)(c. g. c) => \(\widehat{A}=\widehat{BDI}=90^o\)(hai cạnh tương ứng)

và AI = DI (hai cạnh tương ứng)

=> BI = IC (quan hệ giữa đường xiên và hình chiếu)

nên \(\Delta BIC\)cân tại I (đpcm)

c/ Ta có \(\Delta BIC\)cân tại I (cmt)

=> Đường cao ID cũng là đường trung tuyến của \(\Delta BIC\)

=> D là trung điểm BC (đpcm)

d/ Ta có \(\Delta ABC\)vuông tại A

=> BC2 = AB2 + AC2 (định lý Pythagore)

=> AB2 + AC2 = 26= 676

và \(\frac{AB}{AC}=\frac{5}{2}\)=> \(\frac{AB}{5}=\frac{AC}{2}\)=> \(\frac{AB^2}{25}=\frac{AC^2}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{AB^2}{25}=\frac{AC^2}{4}=\frac{AB^2+AC^2}{25+4}=\frac{676}{29}\)

=> \(\hept{\begin{cases}\frac{AB}{5}=\frac{676}{29}\\\frac{AC}{2}=\frac{676}{29}\end{cases}}\)=> \(\hept{\begin{cases}AB=\frac{676}{29}.5\\AC=\frac{676}{29}.2\end{cases}}\)=> \(\hept{\begin{cases}AB=\frac{3380}{29}\left(cm\right)\\AC=\frac{1352}{29}\left(cm\right)\end{cases}}\)