Cho \(x,y\ge0\)và x + y =2.
Tìm GTNN của \(A=\frac{3}{x}+\frac{2}{y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em ko chắc lắm đâu, tại yếu dạng điểm rơi tại biên này lắm.
*Tìm min
Ta có: \(S\ge x^2+y^2+z^2+\frac{3}{2}xyz\) (cái này dễ chứng minh) (Đẳng thức xảy ra khi có một số = 0 (hoặc 2 số "=" 0) )
Ta chứng minh: \(x^2+y^2+z^2+\frac{3}{2}xyz\ge\frac{9}{2}=\frac{\left(x+y+z\right)^2}{2}\)
\(\Leftrightarrow x^2+y^2+z^2+3xyz\ge2xy+2yz+2zx\)
Do \(\left[x\left(y-1\right)\left(z-1\right)\right]\left[y\left(z-1\right)\left(x-1\right)\right]\left[z\left(x-1\right)\left(y-1\right)\right]\)
\(=xyz\left(x-1\right)^2\left(y-1\right)^2\left(z-1\right)^2\ge0\) nên tồn tại ít nhất 1 thừa số không âm. Ở đây em sẽ chứng minh trường hợp \(x\left(y-1\right)\left(z-1\right)\ge0\). Các trường hợp còn lại chứng minh tương tự.
Do \(x\left(y-1\right)\left(z-1\right)\ge0\Rightarrow3xyz\ge3xy+3xz-3x\)
Như vậy ta cần chứng minh: \(x^2+y^2+z^2+xy+zx-3x-2yz\ge0\)
\(\Leftrightarrow x\left(x+y+z\right)+\left(y-z\right)^2\ge0\)(đúng)
Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(0;\frac{3}{2};\frac{3}{2}\right)\) và các hoán vị.
*Tìm Max:
Chưa nghĩ ra.
a/ \(\frac{x}{2}+\frac{18}{x}\ge2\sqrt{\frac{x}{2}.\frac{18}{x}}=...\)
b/ \(\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\ge2\sqrt{\frac{x-1}{2}.\frac{2}{x-1}}+\frac{1}{2}=...\)
c/ \(\frac{3x}{2}+\frac{1}{x+1}=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2}.\frac{1}{x+1}}-\frac{3}{2}=...\)
d/ \(\frac{x}{3}+\frac{5}{2x-1}=\frac{2x-1}{6}+\frac{5}{2x-1}+\frac{1}{6}\ge2\sqrt{\frac{2x-1}{6}.\frac{5}{2x-1}}+\frac{1}{6}=...\)
e/ \(\frac{x}{1-x}+\frac{5}{x}=\frac{x}{1-x}+\frac{5-5x+5x}{x}=\frac{x}{1-x}+\frac{5\left(1-x\right)}{x}+5\ge2\sqrt{\frac{x}{1-x}.\frac{5\left(1-x\right)}{x}}+5=...\)
f/ \(\frac{x^3+1}{x^2}=x+\frac{1}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{1}{x^2}\ge2\sqrt{\frac{x}{2}.\frac{x}{2}.\frac{1}{x^2}}=...\)
g/ \(\frac{x^2+4x+4}{x}=x+\frac{4}{x}+4\ge2\sqrt{x.\frac{4}{x}}+4=...\)
Cho x,y,z dương và x+y+z=3. Tìm GTNN của \(A=\frac{3+x^2}{y+z}+\frac{3+y^2}{z+x}+\frac{3+z^2}{x+y}\)
:(
\(A=\frac{3+x^2}{y+z}+\frac{3+y^2}{z+x}+\frac{3+z^2}{x+y}\)
\(=3\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)+\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)\)
\(\ge3\cdot\frac{9}{2\left(x+y+z\right)}+\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}\)
\(=\frac{27}{2\cdot3}+\frac{3}{2}=6\)
Đẳng thức xảy ra tại x=y=z=1
Áp dụng BĐT Cauchy-Schwarz ta có:\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\Rightarrow4\ge\left(x+y\right)^2\Rightarrow2\ge x+y\)
Lại áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(A=\frac{1}{1+x}+\frac{1}{1+y}\ge\frac{\left(1+1\right)^2}{1+1+x+y}=\frac{4}{x+y+2}\)
Mà \(2\ge x+y\Rightarrow A\ge\frac{4}{2+2}=\frac{4}{4}=1\)
Đẳng thức xảy ra khi \(x=y=1\)
Thắng Nguyễn sai rồi ...
Cái bđt đầu tiên là Bunhiacopxki mới đúng
ko phải Cô-si đâu
-_-
Bài 2 bạn tham khảo cách làm của cô Linh Chi tại đây nhé :
Câu hỏi của nguyen trung nghia - Toán lớp 8 - Học toán với OnlineMath
Học tốt và cá tháng tư đừng để bị troll nha !!!!!!!!!!!
B1:
\(M=\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=2+\frac{x}{y}+\frac{y}{x}\)
Nhờ dự đoán được điểm rơi,ta chứng minh bất đẳng thức sau luôn đúng:\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)
Thật vậy !!!
\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)
\(\Leftrightarrow\left(\frac{x}{y}-\frac{1}{2}\right)+\left(\frac{y}{x}-2\right)\le0\)
\(\Leftrightarrow\frac{2x-y}{2y}+\frac{y-2x}{x}\le0\)
\(\Leftrightarrow\frac{2x^2-xy+2y^2-4xy}{2xy}\le0\)
\(\Leftrightarrow2x^2-5xy+2y^2\le0\)
\(\Leftrightarrow\left(x-2y\right)\left(2x-y\right)\le0\) ( đúng )
Dấu "=" xảy ra tại \(x=1;y=2\)
Vậy \(M_{max}=\frac{9}{2}\Leftrightarrow x=1;y=2\)
Áp dụng bđt cosi ta có
\(\frac{x^3}{y^2+z}+\frac{9}{25}x\left(y^2+z\right)\ge\frac{6}{5}x^2\)
................................................................,,,,
=>\(VT\ge\frac{6}{5}\left(x^2+y^2+z^2\right)-\frac{9}{25}\left(xy^2+yz^2+zx^2+xy+yz+xz\right)\)
Ta có \(\left(x+y+z\right)\left(x^2+y^2+z^2\right)=\left(x^3+xz^2\right)+\left(y^3+yx^2\right)+\left(z^3+zy^2\right)+x^2z+y^2x+z^2y\)
\(\ge3\left(xy^2+yz^2+zx^2\right)\)
=> \(xy^2+yz^2+zx^2\le\frac{2}{3}\left(x^2+y^2+z^2\right)\)
Lại có \(xy+yz+xz\le x^2+y^2+z^2\)
Khi đó
\(VT\ge\frac{6}{5}\left(x^2+...\right)-\frac{9}{25}\left(\frac{5}{3}\left(x^2+y^2+z^2\right)\right)=\frac{3}{5}\left(x^2+y^2+z^2\right)\ge\frac{\left(x+y+z\right)^2}{5}=\frac{4}{5}\)
Vậy MinA=4/5 khi x=y=z=2/3