K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2016

1)

    2600=(26)100=64100

     3400=(34)100=81100

    Vì 81>64 =>81100>64100

3)GTNN A=-1

22 tháng 9 2016

\(2^{600}=2^{6^{100}}\)\(2^6\)và \(3^{400}=\)\(3^{4^{100}}\) =\(3^4\)

Vì \(2^6< 3^4\)nên \(2^{600}< 3^{400}\)

6 tháng 3 2020

1. A = 75(42004 + 42003 +...+ 4+ 4 + 1) + 25

    A = 25 . [3 . (42004 + 42003 +...+ 4+ 4 + 1) + 1]

    A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 4+ 3 . 4 + 3 + 1)

    A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 4+ 3 . 4 + 4)

    A = 25 . 4 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1)

    A =100 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1) \(⋮\) 100

6 tháng 3 2020

3a) |x| = 1/2 

=> x = 1/2 hoặc x = -1/2

với x = 1/2:

A = \(3.\left(\frac{1}{2}\right)^2-2.\frac{1}{2}+1\)

\(A=\frac{3}{4}-1+1=\frac{3}{4}\)

với x = -1/2

A = \(3.\left(-\frac{1}{2}\right)^2-2\left(-\frac{1}{2}\right)+1\)

\(A=\frac{3}{4}+1+1=\frac{3}{4}+2=\frac{11}{4}\)

18 tháng 7 2017

Câu 3 kiểm tra lại đề lại với , nếu đúng thì phức tạp lắm, còn sửa lại đề thì là :

\(y^2+2y+4^x-2^{x+1}+2=0\)

\(=>\left(y^2+2y+1\right)+2^{2x}-2^x.2+1=0\)

\(=>\left(y+1\right)^2+\left(\left(2^x\right)^2-2^x.2.1+1^2\right)=0\)

\(=>\left(y+1\right)^2+\left(2^x-1\right)^2=0\)

Dấu = xảy ra khi :

\(\hept{\begin{cases}y+1=0\\2^x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=-1\\x=0\end{cases}}}\)

CHÚC BẠN HỌC TỐT........... 

18 tháng 7 2017

mk chịu

27 tháng 7 2019

Bài 3 

Với abc=1

Ta CM \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+c+1}=1\)

\(VT=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{a^2bc+abc+ac}\)

       \(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}=1\)(ĐPCM)

Ta có \(\left(1+a\right)^2+b^2+5=\left(a^2+b^2\right)+2a+6\ge2ab+2a+6\)

=> \(\frac{\left(1+a\right)^2+b^2+5}{ab+a+4}=\frac{2ab+2a+6}{ab+a+4}=2-\frac{2}{ab+a+4}\)

Mà \(\frac{1}{ab+a+4}=\frac{1}{ab+a+1+3}\le\frac{1}{4}\left(\frac{1}{ab+a+1}+\frac{1}{3}\right)\)(do \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\))

=> \(\frac{\left(1+a\right)^2+b^2+5}{ab+a+4}\ge2-\frac{1}{2}\left(\frac{1}{ab+a+1}+\frac{1}{3}\right)=\frac{11}{6}-\frac{1}{2}.\frac{1}{ab+a+1}\)

Khi đó

\(P\ge\frac{11}{2}-\frac{1}{2}.\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+c+1}\right)=\frac{11}{2}-\frac{1}{2}.1=5\)

\(MinP=5\)khi \(a=b=c=1\)

1 tháng 1 2019

a) \(A=\left|x-1\right|+2018\)

Vì \(\left|x-1\right|\ge0\forall x\)

\(\Rightarrow A\ge2018\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

1 tháng 1 2019

\(Tacó:\)

\(|x-1|\ge0\Rightarrow|x-1|+2018\left(\cdot\right)\ge2018\)

\(\Rightarrow GTNNcua\left(\cdot\right)=2018\)

Dấu "=" xảy ra khi: x=1

Vậy (*) Đạt GTNN là: 2018 khi: x=1

18 tháng 8 2018

a) \(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\) (ĐKXĐ: \(x\ne\pm1\) )

        \(=\left(\frac{x+1+2\left(1-x\right)-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

         \(=\left(\frac{x+1+2-2x-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

           \(=\left(\frac{-2}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

            \(=\frac{2}{x^2-1}.\frac{x^2-1}{1-2x}=\frac{2}{1-2x}\)

b) Để x nhận giá trị nguyên <=> 2 chia hết cho 1 - 2x

                                         <=> 1-2x thuộc Ư(2) = {1;2;-1;-2}

Nếu 1-2x = 1 thì 2x = 0 => x= 0

Nếu 1-2x = 2 thì 2x = -1 => x = -1/2

Nếu 1-2x = -1 thì 2x = 2 => x =1

Nếu 1-2x = -2 thì 2x = 3 => x = 3/2

Vậy ....

11 tháng 8 2019

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\cdot\cdot\cdot\left(\frac{1}{2009}-1\right)\)

\(=\frac{-1}{2}\cdot\frac{-2}{3}\cdot\cdot\cdot\cdot\frac{-2008}{2009}\)

\(=\frac{\left(-1\right)\cdot\left(-2\right)\cdot\cdot\cdot\left(-2008\right)}{2\cdot3\cdot\cdot\cdot2009}\)

\(=\frac{1\cdot2\cdot\cdot\cdot2008}{2\cdot3\cdot\cdot\cdot2009}\)

\(=\frac{1}{2009}\)

11 tháng 8 2019

1,

\(| x - \frac{2}{7} | = \frac{-1}{5}.\frac{-5}{7}\)

\(|x- \frac{2}{7}|=\frac{1}{7}\)

<=> \(x- \frac{2}{7} = \frac{1}{7} => x= \frac{3}{7} \)

Và \(x - \frac{2}{7} =\frac{-1}{7} => x= \frac{1}{7}\)

Học tốt