- cho \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh:
a/\(\frac{ma+nc}{mb+nd}=\frac{pa+qc}{pb+qd}\)
b/\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
c/\(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=ck\\b=dk\end{cases}}\)
a, ta có
+) \(\frac{ma+nc}{mb+nd}=\frac{mck+nc}{mdk+nd}=\frac{c\left(mk+n\right)}{d\left(mk+n\right)}=\frac{c}{d}\)
+) \(\frac{pa+qc}{pb+qd}=\frac{pck+qc}{pdk+qd}=\frac{c\left(pk+q\right)}{d\left(pk+q\right)}=\frac{c}{d}\)
Vậy...........
b, Ta có
+) \(\frac{ma+nd}{mc+nd}=\frac{mck+ndk}{mc+nd}=\frac{k\left(mc+nd\right)}{mc+nd}=k\)
+) \(\frac{pa+qb}{pc+qd}=\frac{pck+pdk}{pc+qd}=\frac{k\left(pc+qd\right)}{pc+qd}=k\)
Vậy.............
c, ta có
+) \(\frac{ma+nc}{pa+qc}=\frac{mck+nc}{pck+qc}=\frac{c\left(mk+n\right)}{c\left(pk+q\right)}=\frac{mk+n}{pk+q}\)
+) \(\frac{mb+nd}{pb+qd}=\frac{mdk+nd}{pdk+qd}=\frac{d\left(mk+n\right)}{d\left(pk+q\right)}=\frac{mk+n}{pk+q}\)
vậy.........
d, ta có
+) \(\frac{ma+nb}{pa+qb}=\frac{mck+ndk}{pck+qdk}=\frac{k\left(mc+nd\right)}{k\left(pc+qd\right)}=\frac{mc+nd}{pc+qd}\)
Vậy.........
a) Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{ma}{mc}=\frac{nb}{nd}\)
áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{ma}{mc}=\frac{nb}{nd}=\frac{ma+nb}{mc+nd}=\frac{ma-nb}{mc-nd}\)
\(\Rightarrow\frac{ma+nc}{ma-nb}=\frac{mc+nd}{mc-nd}\left(đpcm\right)\)
sai đề mb=nb TL:
a)đặt \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\)
=>a=kb ;c=kd
=>\(\frac{ma+nb}{ma-nb}=\frac{m.k.b+n.b}{m.k.b-n.b}=\frac{b\left(m.k+n\right)}{b\left(m.k-n\right)}=\frac{m.k+n}{m.k-n}\)
Mặt khác:
\(\frac{mc+nd}{mc-nd}=\frac{m.k.d+n.d}{m.k.d-n.d}=\frac{d\left(m.k+n\right)}{d\left(m.k-n\right)}=\frac{m.k+n}{m.k-n}\)
=>\(\frac{ma+nb}{ma-nb}=\frac{mc+nd}{mc-nd}\) (đpcm)
hc tốt
Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)
Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\); \(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)
Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)
\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*
\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)
\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)
Đẳng thức xảy ra khi a = b = c
P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:
1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)
\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)
bài 2 xem có ghi nhầm ko
a)Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\Leftrightarrow\left(\frac{bk-b}{dk-d}\right)^2=\frac{bkb}{dkd}\)
Xét VT \(\left(\frac{bk-b}{dk-d}\right)^2=\left(\frac{b\left(k-1\right)}{d\left(k-1\right)}\right)^2=\left(\frac{b}{d}\right)^2=\frac{b^2}{d^2}\left(1\right)\)
Xét VP \(\frac{bkb}{dkd}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) =>Đpcm
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Ta có:
\(a=bk\)
\(c=dk\)
a) Ta có:
\(\left(\frac{a-b}{c-d}\right)^2=\left(\frac{bk-b}{dk-d}\right)^2=\left[\frac{b\left(k-1\right)}{d\left(k-1\right)}\right]^2=\left(\frac{b}{d}\right)^2\) (1)
\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\) (2)
Từ (1) và (2) suy ra \(\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\left(đpcm\right)\)
b) Ta có:
\(\left(\frac{a+b}{c+d}\right)^3=\left(\frac{bk+b}{dk+d}\right)^3=\left[\frac{b\left(k+1\right)}{d\left(k+1\right)}\right]^3=\left(\frac{d}{b}\right)^3\) (1)
\(\frac{a^3-b^3}{c^3-d^3}=\frac{\left(bk\right)^3-b^3}{\left(dk\right)^3-d^3}=\frac{b^3.k^3-b^3}{d^3.k^3-d^3}=\frac{b^3.\left(k^3-1\right)}{d^3.\left(k^3-1\right)}=\frac{b^3}{d^3}=\left(\frac{b}{d}\right)^3\) (2)
Từ (1) và (2) suy ra\(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\) (đpcm)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(=>\hept{\begin{cases}a=b.k\\c=d.k\end{cases}}\)
\(\left(\frac{a-b}{c-d}\right)^2=\left(\frac{b.k-b}{d.k-d}\right)^2=\left(\frac{b.\left(k-1\right)}{d.\left(k-1\right)}\right)^2\)\(=\frac{\left(b^2.\left(k-1\right)^2\right)}{\left(d^2.\left(k-1\right)^2\right)}=\frac{b^2.\left(k-1\right)^2}{d^2.\left(k-1\right)^2}=\frac{b^2}{d^2}\)\(\left(1\right)\)
\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) => \(\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\)
Đặt \(\frac{a}{b}\)= \(\frac{c}{d}\)= k => a= bk ; c = dk
\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) = \(\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}\)= \(\frac{b^2.\left(k-1\right)^2}{d^2.\left(k-1\right)^2}\)= \(\frac{b^2}{d^2}\) (1)
\(\frac{ab}{cd}\)= \(\frac{bk.b}{dk.d}\)= \(\frac{b^2}{d^2}\) (2)
Từ (1) và (2) ->> \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) = \(\frac{ab}{cd}\)
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)
=> \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\) (1)
\(\frac{ab}{cd}=\frac{kbb}{kdd}=\frac{k.b^2}{k.d^2}=\frac{b^2}{d^2}\) (1)
Từ (1) và (2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
b) Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
Ta có: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)
Mà: \(k^3=\frac{a}{d}\) => \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
a)Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(đpcm\right)\)
Mình chỉ làm bài 1a, và bài 3 thôi nhé,còn lại là bạn tự làm nhé
Bài 1:
a, Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\left[\frac{a}{b}\right]^2=\left[\frac{c}{d}\right]^2=\left[\frac{a+c}{b+d}\right]^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{(a+c)^2}{(b+d)^2}\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{(a+c)^2}{(b+d)^2}\)
Bài 3 : Sửa đề : Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
CM : a = b = c
Cách 1 : Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
vì \(a+b+c\ne0\)
\(\frac{a}{b}=1\Rightarrow a=b;\frac{b}{c}=1\Rightarrow b=c\)
Do đó : \(a=b=c\).
Cách 2 : Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=m\), ta có : \(a=bm,b=cm,c=am\)
Do đó : \(a=bm=m(mc)=m\left[m(ma)\right]\)
\(\Rightarrow a=m^3a\Rightarrow m^3=1(a\ne0)\Rightarrow m=1\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)
Cách 3 : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}=\left[\frac{a}{b}\right]^3\Rightarrow1=\left[\frac{a}{b}\right]^3\Rightarrow\frac{a}{b}=1\)
Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)