K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2016

A=1+5+52+...+5100

=>5A=5+52+53+...+5101

_

A=1+5+52+....5100

___________________________________

4A=5101-1

=>A=5101-1/4

21 tháng 9 2016

5A=5+5^2+5^3+.....+5^101

5A-A=5^101-1

A=\(\frac{5^{101}-1}{4}\)

31 tháng 8 2021

Sao ko bảo chị giải đi, kkkk

31 tháng 8 2021

Haizzzzz

AH
Akai Haruma
Giáo viên
19 tháng 7 2021

Bài 1:
a.

\(\frac{1}{2\sqrt{2}-3\sqrt{3}}=\frac{2\sqrt{2}+3\sqrt{3}}{(2\sqrt{2}-3\sqrt{3})(2\sqrt{2}+3\sqrt{3})}=\frac{2\sqrt{2}+3\sqrt{3}}{(2\sqrt{2})^2-(3\sqrt{3})^2}=\frac{2\sqrt{2}+3\sqrt{3}}{-19}\)

b.

\(=\sqrt{\frac{(3-\sqrt{5})^2}{(3-\sqrt{5})(3+\sqrt{5})}}=\sqrt{\frac{(3-\sqrt{5})^2}{3^2-5}}=\sqrt{\frac{(3-\sqrt{5})^2}{4}}=\sqrt{(\frac{3-\sqrt{5}}{2})^2}=|\frac{3-\sqrt{5}}{2}|=\frac{3-\sqrt{5}}{2}\)

 

AH
Akai Haruma
Giáo viên
19 tháng 7 2021

Bài 2.

a. 

\(=\frac{\sqrt{8}(\sqrt{5}+\sqrt{3})}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}=\frac{2\sqrt{2}(\sqrt{5}+\sqrt{3})}{5-3}=\sqrt{2}(\sqrt{5}+\sqrt{3})=\sqrt{10}+\sqrt{6}\)

b.

\(=\sqrt{\frac{(2-\sqrt{3})^2}{(2-\sqrt{3})(2+\sqrt{3})}}=\sqrt{\frac{(2-\sqrt{3})^2}{2^2-3}}=\sqrt{(2-\sqrt{3})^2}=|2-\sqrt{3}|=2-\sqrt{3}\)

19 tháng 6 2021

a) \(=x^2-49-x^2\) \(=-49\)

b) \(=25x^2-1-25x^2-1\) \(=-2\)

c) \(=16x^2-1-16x^2+8x-1\) \(=8x-2\)

d) \(=9x^2-30x+25-9x^2+25\) \(=50-30x\)

20 tháng 6 2023

loading...

20 tháng 6 2023

\(1,\)

\(a,\sqrt{6-2\sqrt{5}}=\sqrt{\sqrt{5^2}-2.\sqrt{5}.1+1}=\sqrt{\left(\sqrt{5}-1\right)^2}=\left|\sqrt{5}-1\right|=\sqrt{5}-1\)

\(b,\sqrt{8+2\sqrt{7}}=\sqrt{\sqrt{7^2}+2.\sqrt{7}.1+1}=\sqrt{\left(\sqrt{7}+1\right)^2}=\left|\sqrt{7}+1\right|=\sqrt{7}+1\)

\(2,\)

\(a,\sqrt{\left(\sqrt{10}-3\right)^2}-\sqrt{10}\)

\(=\left|\sqrt{10}-3\right|-\sqrt{10}\)

\(=\sqrt{10}-\sqrt{10}-3\)

\(=-3\)

\(b,\sqrt{\left(5+\sqrt{7}\right)^2}-\sqrt{8-2\sqrt{7}}\)

\(=\left|5+\sqrt{7}\right|-\sqrt{\left(\sqrt{7}-1\right)^2}\)

\(=5+\sqrt{7}-\left|\sqrt{7}-1\right|\)

\(=5+\sqrt{7}-\sqrt{7}+1\)

\(=6\)

7 tháng 7 2021

A=(7-2x)(7+2x)+(2x+7)2

    =49-4x2+4x2+28x+49

   = 98+28x

B=(4x-5)2-(2x-1)(8x-5)

  = 16x2-25-((8x(2x-1))-(5(2x-1)))

  = 16x2-25-((16x2+8x)-(10x+5))

  = 16x2-25-(16x2+8x-10x-5)

  = 16x2-25-16x2-8x+10x+5

   = -20+2x

a) Ta có: \(A=\left(7-2x\right)\left(7+2x\right)+\left(2x+7\right)^2\)

\(=7-4x^2+4x^2+28x+49\)

\(=28x+56\)

b) Ta có: \(B=\left(4x-5\right)^2-\left(2x-1\right)\left(8x-5\right)\)

\(=16x^2-40x+25-\left(16x^2-10x-8x+5\right)\)

\(=16x^2-40x+25-16x^2+18x-5\)

\(=-22x+20\)

c) Ta có: \(C=\left(5x-3\right)^2-2\left(5x-3\right)\left(5-5x\right)+\left(5x-5\right)^2\)

\(=\left(5x-3\right)^2+2\cdot\left(5x-3\right)\left(5x-5\right)+\left(5x-5\right)^2\)

\(=\left(5x-3+5x-5\right)^2\)

\(=\left(10x-8\right)^2\)

\(=100x^2-160x+64\)

d) Ta có: \(D=\left(2a+3b-c\right)\left(2a-3b+c\right)-\left(4a^2-9b^2-c^2\right)\)

\(=\left[\left(2a+\left(3b-c\right)\right)\left(2a-\left(3b-c\right)\right)\right]-\left(4a^2-9b^2-c^2\right)\)

\(=4a^2-\left(3b-c\right)^2-4a^2+9b^2+c^2\)

\(=-9b^2+6bc-c^2+9b^2+c^2\)

=6bc

24 tháng 9 2021

\(a,=\sqrt{2}\left(\sqrt{5}+3\right)\sqrt{\left(3-\sqrt{5}\right)^2}=\sqrt{2}\left(\sqrt{5}+3\right)\left(3-\sqrt{5}\right)=4\sqrt{2}\\ b,=\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}=\sqrt{4}=2\)

24 tháng 9 2021

a)\(=\left(\sqrt{10}+3\sqrt{2}\right)\sqrt{\left(3-\sqrt{5}\right)^2}=\left(\sqrt{10}+3\sqrt{2}\right)\left(3-\sqrt{5}\right)=3\sqrt{10}-5\sqrt{2}+9\sqrt{2}-3\sqrt{10}=4\sqrt{2}\)

b) \(=\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}=\sqrt{9-5}=\sqrt{4}=2\)

28 tháng 6 2021

`a)(5sqrt2-2sqrt5)/(sqrt5-sqrt2)+6/(2-sqrt{10})`

`=(sqrt{10}(sqrt5-sqrt2))/(sqrt5-sqrt2)+(6(2+sqrt{10}))/(4-10)`

`=sqrt{10}-(2+sqrt{10})`

`=-2`

`b)6/(sqrt5-1)+7/(1-sqrt3)-2/(sqrt3-sqrt5)`

`=(6(sqrt5+1))/(5-1)+(7(1+sqrt3))/(1-3)-(2(sqrt3+sqrt5))/(3-5)`

`=(6(sqrt5+1))/4-(7+7sqrt3)/2+sqrt3+sqrt5`

`=(3sqrt5+3)/2-(7+7sqrt3)/2+sqrt3+sqrt5`

`=(3sqrt5+3-7-7sqrt3+2sqrt3+2sqrt5)/2`

`=(5sqrt5-5sqrt3-4)/2`

25 tháng 6 2023

\(a,\dfrac{\sqrt{10}-\sqrt{15}}{\sqrt{8}-\sqrt{12}}\\ =\dfrac{\sqrt{2}.\sqrt{5}-\sqrt{3}.\sqrt{5}}{\sqrt{2}.\sqrt{4}-\sqrt{3}.\sqrt{4}}\\ =\dfrac{\sqrt{5}\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{4}\left(\sqrt{2}-\sqrt{3}\right)}\\ =\dfrac{\sqrt{5}}{\sqrt{2^2}}\\ =\dfrac{\sqrt{5}}{2}\)

\(b,\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\\ =\dfrac{\sqrt{5}.\sqrt{3}-\sqrt{3}.\sqrt{2}}{\sqrt{5}.\sqrt{7}-\sqrt{7}.\sqrt{2}}\\ =\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}\\ =\dfrac{\sqrt{3}}{\sqrt{7}}\)

\(c,\dfrac{5+\sqrt{5}}{\sqrt{10}+\sqrt{2}}\\ =\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{2}\left(\sqrt{5}+1\right)}=\dfrac{\sqrt{5}}{\sqrt{2}}\)

25 tháng 6 2023

\(a,=\dfrac{\sqrt{2}.\sqrt{5}-\sqrt{3}.\sqrt{5}}{2\sqrt{2}-2\sqrt{3}}\\ =\dfrac{\sqrt{5}.\left(\sqrt{2}-\sqrt{3}\right)}{2\left(\sqrt{2}-\sqrt{3}\right)}\\ =\dfrac{\sqrt{5}}{2}\)

\(b,=\dfrac{\sqrt{3}.\sqrt{5}-\sqrt{2}.\sqrt{3}}{\sqrt{5}.\sqrt{7}-\sqrt{2}.\sqrt{7}}\\ =\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}\\ =\dfrac{\sqrt{3}}{\sqrt{7}}=\dfrac{\sqrt{21}}{7}\)

\(c,=\dfrac{\sqrt{5}.\sqrt{5}+\sqrt{5}}{\sqrt{2}.\sqrt{5}+\sqrt{2}}\\ =\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{2}\left(\sqrt{5}+1\right)}\\ =\dfrac{\sqrt{5}}{\sqrt{2}}=\dfrac{\sqrt{10}}{2}\)