cho số hữu tỉ \(x=\frac{a+17}{a}\left(a\in Z,a\ne0\right)\)
Tìm a để \(x>0;x< 0;x\)là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn vô link này nhé:
http://olm.vn/hoi-dap/question/600610.html
tick cho mik nha
1
a/
[x+1].[x-2] < 0 => x+1 và x-2 trái dấu
mà x+1 > x-2
=> x+1 > 0 ; x-2 < 0
=> -1 < x < 2 , x thuộc Q
b/
T.tự -2/3 < x < 2 , x thuộc Q
2.
x+y = xy
=> y = xy -x = x.[y-1]
=> x : y = y-1 = x+y
=> x = -1
thay vào x+y = xy
=> y-1 = -y => 2y = 1 => y= 1/2
Vậy x= -1 ; y = 1/2
Ta có : \(\left(x+\sqrt{x^2+2017}\right)\left(-x+\sqrt{x^2+2017}\right)=2017\left(1\right)\)
\(\left(y+\sqrt{y^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\left(2\right)\)
nhân theo vế của ( 1 ) ; ( 2 ) , ta có :
\(2017\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017^2\)
\(\Rightarrow\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\)
rồi bạn nhân ra , kết hợp với việc nhân biểu thức ở phần trên xong cộng từng vế , cuối cùng ta đc :
\(xy+\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017\)
\(\Leftrightarrow\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017-xy\)
\(\Leftrightarrow x^2y^2+2017\left(x^2+y^2\right)+2017^2=2017^2-2\cdot2017xy+x^2y^2\)
\(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)
A = 2017
( phần trên mk lười nên không nhân ra, bạn giúp mk nhân ra nha :) )
2/ \(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)
\(\Leftrightarrow\frac{4\sqrt{x-2011}-4}{x-2011}+\frac{4\sqrt{y-2012}-4}{y-2012}+\frac{4\sqrt{z-2013}-4}{z-2013}=3\)
\(\Leftrightarrow\left(1-\frac{4\sqrt{x-2011}-4}{x-2011}\right)+\left(1-\frac{4\sqrt{y-2012}-4}{y-2012}\right)+\left(1-\frac{4\sqrt{z-2013}-4}{z-2013}\right)=0\)
\(\Leftrightarrow\left(\frac{x-2011-4\sqrt{x-2011}+4}{x-2011}\right)+\left(\frac{y-2012-4\sqrt{y-2012}+4}{y-2012}\right)+\left(\frac{z-2013-4\sqrt{z-2013}+4}{z-2013}\right)=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x-2011}-2\right)^2}{x-2011}+\frac{\left(\sqrt{y-2012}-2\right)^2}{y-2012}+\frac{\left(\sqrt{z-2013}-2\right)^2}{z-2013}=0\)
Dấu = xảy ra khi \(\sqrt{x-2011}=2;\sqrt{y-2012}=2;\sqrt{z-2013}=2\)
\(\Leftrightarrow x=2015;y=2016;z=2017\)
2.P=\(\frac{3-a}{a+10}\)
a, để P>0
TH1 3-a>0 và a+10 >0
=> a<3 và a> -10
=> -10<a<3
TH2 3-a<0 và a+10<0
=> a>3 và a<-10(vô lý)
Vậy để P>0 thì -10<a<3
b.để P<0
TH1 3-a<0 và a+10>0
a>3 và a>-10
Vậy a>3
TH2 3-a>0 và a+10<0
=> a<3 và a<-10
Vậy a<-10
vậy để P<0 thì a >3 hoặc a<-10
bài 3.
a.\(\frac{7}{3}\)<x<\(\frac{17}{2}\)=>\(\frac{14}{6}\)<x<\(\frac{51}{6}\)
Vậy x=\(\left\{\frac{15}{6};\frac{16}{6};\frac{17}{6};..........;\frac{50}{6}\right\}\)
b.\(\frac{-3}{2}\)<y<2=>\(\frac{-3}{2}\)<y<\(\frac{4}{2}\)
Vậy y=\(\left\{\frac{-2}{2};\frac{-1}{2};\frac{0}{2};\frac{1}{2};\frac{2}{2};\frac{3}{2}\right\}\)
c.\(\frac{-17}{3}\)<z<\(\frac{-3}{2}\)=>\(\frac{-34}{6}\)<z<\(\frac{-9}{6}\)
Vậy z=\(\left\{\frac{-33}{6};\frac{-32}{6};\frac{-31}{6};.........\frac{-10}{6}\right\}\)
a) \(x\)là số hữu tỉ khi \(a-17\ne0\Leftrightarrow a\ne17\).
b) \(x\)là số hữu tỉ dương khi \(\frac{13}{a-17}>0\Leftrightarrow a-17>0\Leftrightarrow a>17\).
c) \(x\)là số hữu tỉ âm khi \(\frac{13}{a-17}< 0\Leftrightarrow a-17< 0\Leftrightarrow a< 17\).
d) \(x=-1\Rightarrow\frac{13}{a-17}=-1\Rightarrow13=17-a\Leftrightarrow a=4\).
e) \(x>1\Rightarrow\frac{13}{a-17}>1\Leftrightarrow\frac{13-a+17}{a-17}>0\Leftrightarrow\frac{30-a}{a-17}>0\Leftrightarrow17< a< 30\).
f) \(0< x< 1\Rightarrow0< \frac{13}{a-17}< 1\Leftrightarrow a-17>13\Leftrightarrow a>30\).
\(\text{Thần đồng tính nhẩm nà tui ADMIRE lém!}\)
\(\text{Ta có:}\)\(\frac{a+17}{a}=\frac{a}{a}+\frac{17}{a}\)
\(=1+\frac{17}{a}\)
\(\text{Để x nguyên thì a/17 phải nguyên}\)
\(\Rightarrow a\inƯ\left(17\right)=\left\{1;17;-1;-17\right\}\)
hinh nhu ban lam thieu buoc