Chứng minh đa thức sau không có nghiệm:
a, x^2 + 2x + 2
b, x^2 - 2x + 5
c, x^2 - 4x + 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,`
`f(x)=x^2+4x+10`
\(\text{Vì }\)\(x^2\ge0\left(\forall x\right)\)
`->`\(x^2+4x+10\ge10>0\left(\forall\text{ x}\right)\)
`->` Đa thức không có nghiệm (vô nghiệm).
`c,`
`f(x)=5x^4+x^2+` gì nữa bạn nhỉ? Mình đặt vd là 1 đi nha :v.
Vì \(x^4\ge0\text{ }\forall\text{ }x\rightarrow5x^4\ge0\text{ }\forall\text{ }x\)
\(x^2\ge0\text{ }\forall\text{ }x\)
`->`\(5x^4+x^2+1\ge1>0\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
`b,`
`g(x)=x^2-2x+2017`
Vì \(x^2\ge0\text{ }\forall\text{ }x\)
`->`\(x^2-2x+2017\ge2017\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
`d,`
`g(x)=4x^2004+x^2018+1`
Vì \(x^{2004}\ge0\text{ }\forall\text{ }x\rightarrow4x^{2004}\ge0\text{ }\forall\text{ }x\)
\(x^{2018}\ge0\text{ }\forall\text{ }x\)
`->`\(4x^{2004}+x^{2018}+1\ge1>0\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
Trình bày đề bài cho dễ nhìn bạn eyy :v
Khó nhìn như này thì God cũng chịu -.-
a. ta có
(2x − 3)2 ≥ 0
=> (2x − 3)2 + 10 > 0
=> đa thức trên ko có nghiệm
b. ta có:
x2 ≥ 0
4 > 0
=> x2 + 4 > 0
=> x2 + 2x + 4 > 0
=> đa thức trên ko có nghiệm
câu c mik vẫn chưa biết chứng minh vì bài này lần đầu tiên làm. Sorry bạn !!!
Giả sử x=a là nghiệm nguyên f(a)
\(\Leftrightarrow-4a^4+3a^3-2a^2+a-1=0\\ \Leftrightarrow-4a^4-2a^2+4a^3-a\left(a^2-1\right)=1\\ \Leftrightarrow1=-4a^4+4a^3-2a^2-\left(a+1\right)a\left(a-1\right)\left(1\right)\)
Vì a nguyên nên \(\left(a+1\right)a⋮2\Rightarrow\left(a+1\right)a\left(a-1\right)⋮2\)
Mà \(-4a^4+4a^3-2a^2⋮2\)
\(\Rightarrow-4a^4+4a^3-2a^2-\left(a-1\right)a\left(a+1\right)⋮2\) kết hợp (1)
\(\Rightarrow1⋮2\left(VL\right)\)
Vậy không tồn tại nghiệm nguyên của f(x)
Lời giải:
1.
\(M(x)=A(x)-2B(x)+C(x)\)
\(2x^5 – 4x^3 + x^2 – 2x + 2-2(x^5 – 2x^4 + x^2 – 5x + 3)+ (x^4 + 4x^3 + 3x^2 – 8x + \frac{43}{16})\)
\(=5x^4+2x^2-\frac{21}{16}\)
2.
Khi $x=-\sqrt{0,25}=-0,5$ thì:
\(M(x)=5.(-0,5)^4+2(-0,5)^2-\frac{21}{16}=\frac{-1}{2}\)
3)
$M(x)=0$
$\Leftrightarrow 5x^4+2x^2-\frac{21}{16}=0$
$\Leftrightarrow 80x^4+32x^2-21=0$
$\Leftrightarrow 4x^2(20x^2-7)+3(20x^2-7)=0$
$\Leftrightarrow (4x^2+3)(20x^2-7)=0$
Vì $4x^2+3>0$ với mọi $x$ thực nên $20x^2-7=0$
$\Rightarrow x=\pm \sqrt{\frac{7}{20}}$
Đây chính là giá trị của $x$ để $M(x)=0$
a/ (2x + 1)(4x – 3) – 6x(x + 5) – 2x(x – 7) + 18x
=8x^2-6x+4x-3-6x^2-30x-2x^2+14x+18x
=-3
vậy...
Dễ mà áp dụng tính chất này mà làm nè:
Câu a với câu b: (A+B)2=A2+2AB+B2
Câu c: (A-B)2=A2-2AB+B2
a. \(x^2+2x+2\)
\(=x^2+x+x+1+1\)
\(=\left(x^2+x\right)+\left(x+1\right)+1\)
\(=x\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x+1\right)+1\)
\(=\left(x+1\right)^2+1>0+1>0\)
Vậy: Đa thức trên vô nghiệm
b. \(x^2-2x+5\)
\(=x^2-x-x+1+4\)
\(=\left(x^2-x\right)-\left(x-1\right)+4\)
\(=x\left(x-1\right)-\left(x-1\right)+4\)
\(=\left(x-1\right)\left(x-1\right)+4\)
\(=\left(x-1\right)^2+4>0+4>0\)
Vậy: Đa thức trên vô nghiệm
c.\(x^2-4x+5\)
\(=x^2-2x-2x+4+1\)
\(=\left(x^2-2x\right)-\left(2x-4\right)+1\)
\(=x\left(x-2\right)-2\left(x-2\right)+1\)
\(=\left(x-2\right)\left(x-2\right)+1\)
\(=\left(x-2\right)^2+1>0+1>0\)
Vậy: Đa thức trên vô nghiệm