K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2016

Ta có \(\left(9+1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)

\(=\frac{1}{8}\left(9-1\right)\left(9+1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)

\(=\frac{1}{8}\left(9^2-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)

cứ như thế

\(=\frac{1}{8}\left(9^{64}-1\right)< 9^{64}-1\)=>đpcm

6 tháng 4 2019

964 - 1 = (932 + 1)(932 - 1) = ... = (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(9 + 1)(9 - 1) > (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92​ + 1)(9 + 1)

6 tháng 4 2019

964=(932​+1).(932-1)

=(932+1)(916+1)(916-1)

=(932+1)(916+1)(98+1)(98-1)

=(932+1)(916+1)(98+1)(94+1)(94-1)

=(932+1)(916+1)(98+1)(94+1)(92+1)(92-1)

=(932+1)(916+1)(98+1)(94+1)(92+1)(9+1)(9-1)

Vì (932+1)(916+1)(98+1)(94+1)(92+1)(9+1)(9-1)>(932+1)(916+1)(98+1)(94+1)(92+1)(9+1)

=>964-1>(932+1)(916+1)(98+1)(94+1)(92+1)(9+1)

31 tháng 3 2020

Bạn viết đề như này sao hiểu đc

31 tháng 3 2020

a) 19 + (29 - 9*37) - (63*9 - 29*99)

= 19 + 29 - 9*37 - 63*9 + 29*99

= 19 + 29(1 + 99) - 9(37 + 63)

= 19 + 29*100 - 9*100

= 19 + 100(29 - 9)

= 19 + 100*20

= 19 + 2000 = 2019

b) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

= \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}\)

= \(\frac{2^6+2^5+2^4+2^3+2^2+2+1}{2^7}\)

= \(\frac{64+32+16+8+4+2+1}{128}\) = \(\frac{127}{128}\)

1 tháng 8 2020

a) \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+........+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.........+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

b) \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+..........+\frac{2}{73.75}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+.......+\frac{1}{73}-\frac{1}{75}\)

\(=\frac{1}{3}-\frac{1}{75}=\frac{8}{25}\)

c) \(\frac{4}{4.6}+\frac{4}{6.8}+\frac{4}{8.10}+..........+\frac{4}{64.66}\)

\(=2.\left(\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+..........+\frac{2}{64.66}\right)\)

\(=2.\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+.....+\frac{1}{64}-\frac{1}{66}\right)\)

\(=2.\left(\frac{1}{4}-\frac{1}{66}\right)=2.\frac{31}{132}=\frac{31}{66}\)

1 tháng 8 2020

d) \(\frac{9}{5.8}+\frac{9}{8.11}+\frac{9}{11.14}+........+\frac{9}{497.500}\)

\(=3.\left(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+..........+\frac{3}{497.500}\right)\)

\(=3.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+......+\frac{1}{497}-\frac{1}{500}\right)\)

\(=3.\left(\frac{1}{5}-\frac{1}{500}\right)=3.\frac{99}{500}=\frac{297}{500}\)

e) \(\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+......+\frac{1}{93.95}\)

\(=\frac{1}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+........+\frac{2}{93.95}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+........+\frac{1}{93}-\frac{1}{95}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{95}\right)=\frac{1}{2}.\frac{18}{95}=\frac{9}{95}\)

g) \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+..........+\frac{1}{200.203}\)

\(=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+........+\frac{3}{200.203}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+......+\frac{1}{200}-\frac{1}{203}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{203}\right)=\frac{1}{3}.\frac{201}{406}=\frac{67}{406}\)

3 tháng 3 2016

Câu 1 ) Sắp xếp theo thứ tự từ bé đến lớn

11 phần 18;7 phần 9;14 phần 15

Câu 2 ) Sắp xếp theo thứ tự từ bé đến lớn

8 phần 9;15 phần 11;9 phần 5

Câu 3 ) So sánh 

3 phần 4 < 5 phần 9

Câu 4 ) So sánh

8 phần 12 < 25 phần 30

Như lời hứa nhớ k nha

3 tháng 3 2016

Cảm ơn bạn Mỹ Chi nhiều nhé

1 tháng 7 2020

Ta có: A=\(\frac{20^8+1}{20^9+1}\)

=>20A=\(\frac{20^9+20}{20^9+1}\)=\(\frac{20^9+1+19}{20^9+1}=1+\frac{19}{20^9+1}\)

Lại có B=\(\frac{20^9+1}{20^{10}+1}\)

=>20B=\(\frac{20^{10}+20}{20^{10}+1}\)=\(\frac{20^{10}+1+19}{20^{10}+1}=\frac{20^{10}+1}{20^{10}+1}+\frac{19}{20^{10}+1}=1+\frac{19}{20^{10}+1}\)

Ta thấy \(20^9+1< 20^{10}+1\)

=>\(\frac{19}{20^9+1}>\frac{19}{20^{10}+1}\)

=>\(1+\frac{19}{20^9+1}>1+\frac{19}{20^{10}+1}\)

hay A>B
Vậy A>B

1 tháng 7 2020

Xin lỗi vì sau 1 thời gian dài mới làm vì mik nghĩ bạn cx làm xong rồi nhưng coi như mik làm để tập quen vs nâng cao ik

3 tháng 7 2015

tách ít ít ra thôi. để cả cộp thế này k ai làm cho đâu. mệt quá