K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Vì \(\frac{a}{b}=k\)\(\Rightarrow a=bk\)

\(\frac{c}{d}=k\)\(\Rightarrow c=dk\)

Có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=\frac{bd.k^2}{bd}=k^2\)\(\left(1\right)\)

Vì \(a=bk,c=dk\Rightarrow\)\(\frac{\left(a+b\right)^2}{\left(b+d\right)^2}\)\(=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{[k\left(b+d\right)]^2}{\left(b+d\right)^2}=\frac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\left(2\right)\)

Từ (1) và (2)\(\Rightarrow\)đpcm

25 tháng 9 2019

mình sửa đề thì ms lm đc

6 tháng 10 2016

Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=b.k,c=d.k\)

Ta có:

\(\frac{a.c}{b.d}=\frac{b.k.d.k}{b.d}=k^2\) (1)

\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(b.k+d.k\right)^2}{\left(b+d\right)^2}=\frac{\left[k.\left(b+d\right)\right]^2}{\left(b+d\right)^2}=k^2\) (2)

Từ (1) và (2) suy ra \(\frac{a.c}{b.d}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

9 tháng 10 2016

thank you very much

 

6 tháng 11 2017

ta cóa/b=c/d

áp dụng tính chất dãy tỉ số bằng nahu ta có

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

=>\(\frac{a}{b}=\frac{a+c}{b+d}\)=>\(\frac{a^2}{b^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

hay \(\frac{a}{b}.\frac{a}{b}=\)\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

\(\frac{a}{b}.\frac{c}{d}=\)\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

vậy\(\frac{ac}{bd}\)=\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

t nhé

6 tháng 11 2017

Đặt :

a/b = c/d = k

=> a = bk; c= dk

Xét từng vế của đẳng thức ta dc :

ac/ bd = bk.dk/bd = bd.k^2/bd = k^2 (1)

(a+c)^2/(b+d)^2 = (bk+dk)^2/(b+d)^2 = k^2(b+d)^2/(b+d)^2 = k^2 (2)

Từ (1) + (2) => đpcm

24 tháng 9 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a+c}{b+d}.\frac{a+c}{b+d}\)

\(\Rightarrow\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(đpcm\right)\)

10 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2-c^2}{b^2-d^2}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{c}{d}=\frac{ac}{bd}\)

\(\Rightarrow\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)

Vậy ...

10 tháng 11 2018

Giải : Đặt \(\frac{a}{b}=\frac{c}{d}=k\)=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Khi đó, ta có : \(\frac{bk.dk}{bd}=\frac{bdk^2}{bd}=k^2\)(1)

          \(\frac{\left(bk\right)^2-\left(dk\right)^2}{b^2-d^2}=\frac{b^2.k^2-d^2.k^2}{b^2-d^2}=\frac{\left(b^2-d^2\right).k^2}{b^2-d^2}=k^2\)(2)

Từ (1) và (2) suy ra : \(\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)

22 tháng 5 2018

Ta có : 

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\frac{a}{b}.\frac{c}{d}=\left(\frac{a+c}{b+d}\right).\left(\frac{a+c}{b+d}\right)\)hay \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

26 tháng 9 2017

Áp dụng tính chất dãy tỉ số bằng nhau ; ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\\ \Rightarrow\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

12 tháng 9 2017

Trong sách có nhé , bạn ạ

Cách 1 :

Từ a/b = c/d => a/c = b/d ( tính chất tỉ lệ thức )

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

a/c = b/d = a+b/a-b = a-b/c-d => a+b/a-b = c+d/c-d ( tính chất tỉ lệ thức )

Vậy a+b/a-b = c+d/c-d

Cách 2:

Đặt : a/b = c/d = k

a/b = k => a= bk

c/d = k => c=dk

a+b/a-b = bk+b/ bk-b = b(k+1)/b(k-1) = k+1/k-1. (1)

c+d/c-d = dk+d/dk-d = d(k+1)/d(k-1) + k+1/k-1. (2)

Từ (1) và (2) suy ra a+b/a-b = c+d/c-d.

21 tháng 9 2017

Áp dụng dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

\(\Rightarrow\dfrac{a}{b}.\dfrac{c}{d}=\dfrac{a+c}{b+d}.\dfrac{a+c}{b+d}\)

\(\Rightarrow\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\) \(\left(đpcm\right)\)

Chúc bạn học tốt!

Ta có :

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\left(\frac{a+c}{b+d}\right)^2=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\left(đpcm\right)\)