K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2022

\(C=\dfrac{x-1}{x^2}:\dfrac{x-1}{2x+1}\)

\(C=\dfrac{x-1}{x^2}.\dfrac{2x+1}{x-1}\)

\(C=\dfrac{2x+1}{x^2}\)

9 tháng 5 2021

a, Với \(x=3\)\(=>A=\frac{x-1}{2}=\frac{3-1}{2}=\frac{2}{2}=1\)

Vậy A = 1 khi x = 3

b, Ta có : \(B=\frac{1}{x}-\frac{x}{2x+1}+\frac{2x^2-3x-1}{x\left(2x+1\right)}\)

\(=\frac{2x+1}{x\left(2x+1\right)}-\frac{x^2}{x\left(2x+1\right)}+\frac{2x^2-3x-1}{x\left(2x+1\right)}\)

\(=\frac{x^2-3x+2x+1-1}{x\left(2x+1\right)}=\frac{x^2-x}{x\left(2x+1\right)}=\frac{x\left(x-1\right)}{x\left(2x+1\right)}=\frac{x-1}{2x+1}\)

9 tháng 5 2021

Ta có : \(A=\frac{x-1}{2};B=\frac{x-1}{2x+1}\)

\(=>C=A:B=\frac{x-1}{2}:\frac{x-1}{2x+1}=\frac{2x+1}{2}=x+\frac{1}{2}\)

đề sai bạn ơi 

1: \(B=\dfrac{2x+1-x^2+2x^2-3x-1}{x\left(2x+1\right)}=\dfrac{x^2-x}{x\left(2x+1\right)}=\dfrac{x-1}{2x+1}\)

2: \(C=A:B\)

\(=\dfrac{x-1}{x^2}:\dfrac{x-1}{2x+1}=\dfrac{2x+1}{x^2}\)

\(C+1=\dfrac{2x+1+x^2}{x^2}=\dfrac{\left(x+1\right)^2}{x^2}>=0\)

=>C>=-1

a: Khi x=1 thì\(P=\dfrac{1-2}{1+2}=\dfrac{-1}{2}\)

b: \(=\dfrac{3x+6+5x-6+2x^2-4x}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x^2+4x}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x}{x-2}\)

c: \(P=A\cdot B=\dfrac{2x}{x-2}\cdot\dfrac{x-2}{x+1}=\dfrac{2x}{x+1}\)

\(P-2=\dfrac{2x-2x-2}{x+1}=\dfrac{-2}{x+1}\)

P<=2

=>x+1>0

=>x>-1

10 tháng 11 2023

a:

ĐKXĐ: x<>-1

 \(\dfrac{x^2+2}{x^3+1}-\dfrac{1}{x+1}\)

\(=\dfrac{x^2+1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{1}{x+1}\)

\(=\dfrac{x^2+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x}{\left(x+1\right)\left(x^2-x+1\right)}\)

b: \(\dfrac{x}{x^2-2x}-\dfrac{x^2+4x}{x^3-4x}-\dfrac{2}{x^2+2x}\)

\(=\dfrac{x}{x\left(x-2\right)}-\dfrac{x\left(x+4\right)}{x\left(x^2-4\right)}-\dfrac{2}{x\left(x+2\right)}\)

\(=\dfrac{1}{x-2}-\dfrac{x+4}{x^2-4}-\left(\dfrac{1}{x}-\dfrac{1}{x+2}\right)\)

\(=\dfrac{1}{x-2}-\dfrac{x+4}{x^2-4}-\dfrac{1}{x}+\dfrac{1}{x+2}\)

\(=\left(\dfrac{1}{x-2}-\dfrac{x+4}{x^2-4}+\dfrac{1}{x+2}\right)-\dfrac{1}{x}\)

\(=\dfrac{x+2-x-4+x-2}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x}\)

\(=\dfrac{x-4}{x^2-4}-\dfrac{1}{x}\)

\(=\dfrac{x^2-4x-x^2+4}{x\left(x^2-4\right)}=\dfrac{-4x+4}{x\left(x-2\right)\left(x+2\right)}\)

c: \(\dfrac{1}{2-2x}-\dfrac{3}{2+2x}+\dfrac{2x}{x^2-1}\)

\(=\dfrac{-1}{2\left(x-1\right)}-\dfrac{3}{2\left(x+1\right)}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-x-1-3x+3+4x}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{2}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x^2-1}\)

d:

\(\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(b-c\right)\left(c-a\right)}+\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)

\(=\dfrac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

 

26 tháng 4 2021

đk: \(_{x+1\ne0\Leftrightarrow x\ne-1}\)\(\dfrac{1-x}{x+1}+3=\dfrac{2x-3}{x+1}\Leftrightarrow\dfrac{1-x}{x+1}+\dfrac{3\left(x+1\right)}{x+1}=\dfrac{2x+3}{x-1}\Leftrightarrow1-x+3x+3-2x-3=0\Leftrightarrow-2x+1=0\Leftrightarrow-2x=-1\Leftrightarrow x=0,5\)

a) Ta có: \(\dfrac{x}{x-1}-\dfrac{2}{x-1}\)

\(=\dfrac{x-2}{x-1}\)

b) Ta có: \(\dfrac{4+4x}{3x^2+6x}+\dfrac{x}{3x+6}\)

\(=\dfrac{4+4x}{x\left(3x+6\right)}+\dfrac{x^2}{x\left(3x+6\right)}\)

\(=\dfrac{x^2+4x+4}{3x\left(x+2\right)}\)

\(=\dfrac{\left(x+2\right)^2}{3x\left(x+2\right)}\)

\(=\dfrac{x+2}{3x}\)

c) Ta có: \(\dfrac{x^2-2x}{x-1}\cdot\dfrac{1}{x}:\dfrac{x^2-4}{x^2-2x+1}\)

\(=\dfrac{x\left(x-2\right)}{x-1}\cdot\dfrac{1}{x}\cdot\dfrac{x^2-2x+1}{x^2-4}\)

\(=\dfrac{x-2}{x-1}\cdot\dfrac{\left(x-1\right)^2}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x-1}{x+2}\)

30 tháng 12 2020

2: Ta có: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=\dfrac{a\left(a+b+c\right)}{b+c}+\dfrac{b\left(a+b+c\right)}{c+a}+\dfrac{c\left(a+b+c\right)}{a+b}-a-b-c=\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c-a-b-c=0\)

30 tháng 12 2020

1: Sửa đề: Cho \(x,y,z\ne0\) và \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}=\dfrac{2}{2x+y+2z}\).

CM:....

Đặt 2x = x', 2z = z'.

Ta có: \(\dfrac{2}{x'}+\dfrac{2}{y}+\dfrac{2}{z'}=\dfrac{2}{x'+y+z'}\)

\(\Leftrightarrow\dfrac{1}{x'}+\dfrac{1}{y}+\dfrac{1}{z'}=\dfrac{1}{x'+y+z'}\)

\(\Leftrightarrow\dfrac{1}{x'}-\dfrac{1}{x'+y+z'}+\dfrac{1}{y}+\dfrac{1}{z'}=0\)

\(\Leftrightarrow\dfrac{y+z'}{x'\left(x'+y+z'\right)}+\dfrac{y+z'}{yz'}=0\)

\(\Leftrightarrow\dfrac{\left(y+z'\right)\left(yz'+x'^2+x'y+x'z'\right)}{x'yz'\left(x'+y+z'\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x'+y\right)\left(y+z'\right)\left(z'+x'\right)}{x'yz'\left(x'+y+z'\right)}=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(2z+2x\right)=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(z+x\right)=0\left(đpcm\right)\)

 

 

28 tháng 12 2023

loading...