Cho ∆ ABC cân (AB =AC) Trên tia đối cua tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh:
a/ AB< AD
b) ∆𝐴𝐵𝐷 = ∆𝐴𝐶𝐸
c/Kẻ trung tuyến AM của tam giác ABC . Cminh AM cũng là đường trung tuyến của tam giác ADE
d) Vẽ BH vuông góc với AD( H ϵ AD), vẽ CK vuông góc với AE( K ϵ AE).
Chứng minh :BH=CK
e)Tia HB cắt tia KC tại I. Chứng minh AI là tia phân giác của góc BAC
f)C/minh : HK // DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé!
Vì BD là p/g của góc ABC => góc ABD = góc DBC = \(\frac{1}{2}\) góc ABC = góc C
=> góc ABD = góc C
Mà góc ABN + ABD = 180o; góc ACP + C = 180o
Nên góc ABN = ACP
Xét tam giác ABN và tam giác PCA có: BN = CA; góc ABN = PCA ; AB = PC
=> tam giác ABN = PCA ( c - g - c)
=> góc BAN = APC
Vậy để AP | AN => góc PAN = 90o => BAN + BAC + CAP = 90o
=> APC + BAC + CAP = 90o
Xét tam giác ACP có: góc ACB = APC + CAP ( t/ c góc ngoài tam giác )
=> góc ACB + BAC = 90o
=> góc ABC = 90o => góc ACB = ABC/ 2 = 45o
Vậy góc ACB = 45o thì AN | AP
Hình vẽ bn tự vẽ
Vì tam giác ABC đều nên góc BAC=60 độ
Mà góc EAD=góc BAC
Suy ra: góc EAD=60 độ
Ta lại có: AE=AD(gt)
Suy ra: tam AED đều có DM là đg trung tuyến
Suy ra DM cũng là đường cao
Xét tam giác vuông DMC có:
\(MP=\frac{1}{2}CD\)(1)
Tương tự: CN vuông góc AB
Xét tam giác vuông CND có:
\(NP=\frac{1}{2}CD\)(2)
Chứng minh tam giác AEB= tam giác ADC (c.g.c) bn tự chứng minh
Suy ra: CD=BE
Mà tam giác AEB có: MN là đường trung bình
Suy ra: \(MN=\frac{1}{2}BE\)
Suy ra: \(MN=\frac{1}{2}CD\)(Vì BE=CD) (3)
Từ (1);(2) và (3)
Vậy tam giác MNP đều
Chúc bn học tốt.
Mik đi hc đến 8h30 tối mới về nên làm hơi trễ
a: ΔABC cân tại A nên góc ABC<90 độ
=>góc ABD>90 độ
=>AB<AD
b: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
c: MB+BD=MD
MC+CE=ME
mà MB=MC và BD=CE
nên MD=ME
=>M là trung điểm của DE
=>AM là đường trung tuyến của ΔADE
d: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH=góc CAK
=>ΔAHB=ΔAKC
=>HB=KC
f: Xét ΔADE có AH/AD=AK/AE
nên HK//DE