tìm số tự nhiên x sao cho
a)x bé nhất và x >2\(\frac{1}{3}\)+3\(\frac{1}{4}\)
b)x lớn nhất và x<\(\frac{46}{3}\)+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x ⋮ 12;x ⋮ 25; x ⋮ 30 ⇒ x ∈ BC(12,25,30)
12 = 22 . 3 ; 25 = 52 ; 30 = 5.2.3
BCNN(12,25,30) = 22 . 52 . 3 = 300
BC(12,25,30) = B(300) = {0,300,600,...}
Mà theo đề bài 0 ≤ x ≤ 500 ⇒ x = 0;300
b) 70 ⋮ x ; 84 ⋮ x ; 120 ⋮ x ⇒ x ∈ ƯC(70,84,120)
70 = 2.3.7 ; 84 = 22.3.7 ; 120 = 23 .5.3
ƯCLN(70,84,120) = 2
ƯC(70,84,120) = Ư(2) = {1,2}
Mà x ≥ 8 ⇒ x = ∅
B = \(\frac{\sqrt{x}-2}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}+\frac{5-2\sqrt{x}}{x+\sqrt{x}-2}\)
B = \(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+\sqrt{x}-1+5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
B = \(\frac{x-4-\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
B = \(\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
B = \(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}}{\sqrt{x}+2}\)
=>\(\frac{A}{B}=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{\sqrt{x}}{\sqrt{x}+2}=\frac{4\sqrt{x}}{\sqrt{x}-5}\cdot\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{4\sqrt{x}+8}{\sqrt{x}-5}\)
\(\frac{A}{B}< 4\) <=> \(\frac{4\sqrt{x}+8}{\sqrt{x}-5}-4< 0\) <=> \(\frac{4\sqrt{x}+8-4\sqrt{x}+20}{\sqrt{x}-5}< 0\) <=> \(\frac{28}{\sqrt{x}-5}< 0\)
Do 28 > 0 => \(\sqrt{x}-5< 0\) <=> \(\sqrt{x}< 5\) => x < 25
Do x là số tự nhiên lớn nhất => x = 24
a: \(35=5\cdot7;105=3\cdot5\cdot7\)
=>\(ƯCLN\left(35;105\right)=35\)
\(35⋮x;105⋮x\)
=>\(x\inƯC\left(35;105\right)\)
mà x lớn nhất
nên x=ƯLCN(35;105)
=>x=35
b:
\(72=2^3\cdot3^2;54=3^3\cdot2\)
=>\(ƯCLN\left(72;54\right)=3^2\cdot2=18\)
\(72⋮x;54⋮x\)
=>\(x\inƯC\left(72;54\right)\)
=>\(x\inƯ\left(18\right)\)
=>\(x\in\left\{1;-1;2;-2;3;-3;6;-6;9;-9;18;-18\right\}\)
mà 10<x<20
nên x=18
c:
\(21=3\cdot7;35=5\cdot7;50=5^2\cdot2\)
=>\(BCNN\left(21;35;50\right)=5^2\cdot2\cdot3\cdot7=1050\)
\(x⋮21;x⋮35;x⋮50\)
=>\(x\in BC\left(21;35;50\right)\)
=>\(x\in B\left(1050\right)\)
mà x nhỏ nhất
nên x=1050
d:
\(39=3\cdot13;65=5\cdot13;26=2\cdot13\)
=>\(BCNN\left(39;65;26\right)=2\cdot3\cdot5\cdot13=390\)
\(x⋮39;x⋮65;x⋮26\)
=>\(x\in BC\left(39;65;26\right)\)
=>\(x\in B\left(390\right)\)
=>\(x\in\left\{390;780;1170;...\right\}\)
mà 100<=x<=999
nên \(x\in\left\{390;780\right\}\)
a: \(\Leftrightarrow x-2\in\left\{-1;1;7\right\}\)
hay \(x\in\left\{1;3;9\right\}\)
b: \(\Leftrightarrow x\in BC\left(12;15;20\right)\)
mà 150<x<280
nên \(x\in\left\{180;240\right\}\)