Cho tam giác ABC có A (2;0), B (4;1), C(1;2)
a)Viết pt đường thẳng đi qua các cạnh của tam giác
b)Viết pt các đường cao AH. Tính độ dài AH
c)Viết pt các đường trung trực của canh AC
d)Tính góc hợp các cặp đường thẳng AB và AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)
nên ΔIBC cân tại I
2: Xét ΔABD và ΔACE có
\(\widehat{A}\) chung
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
a: Xét tứ giác AEBM có
D là trung điểm của AB
D là trung điểm của EM
Do đó: AEBM là hình bình hành
mà MA=MB
nên AEBM là hình thoi
a: vecto AB=(2;1)
=>VTPT là (-1;2)
Phương trình AB là:
-1(x-2)+2(y-0)=0
=>-x+2y+2=0
vecto AC=(-1;2)
=>VTPT là (2;1)
PT AC là:
2(x-2)+1(y-0)=0
=>2x+y-4=0
vecto BC=(-3;1)
=>VTPT là (1;3)
Phương trình BC là:
1(x-4)+3(y-1)=0
=>x+3y-7=0
b: vecto BC=(-3;1)
=>AH có VTPT là (-3;1)
Phương trình AH là;
-3(x-2)+1(y-0)=0
=>-3x+6+y=0
c: Tọa độ I là trung điểm của AC là;
x=(2+1)/2=1,5 và y=(0+2)/2=1
vecto AC=(-1;2)
=>(d) có VTPT là (-1;2) và đi qua I(1,5;1)
Phương trình trung trực của AC là;
-1(x-1,5)+2(y-1)=0
=>-x+1,5+2y-2=0
=>-x+2y-0,5=0