K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

Bài 2 : c/m là AB+AC<BM+MC nha mấy bạn giúp mk vs 

a: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

nên ABCD là hình bình hành

b: Xét tứ giác AEBC có

N là trung điểm chung của AB và EC

nên AEBC là hình bình hành

=>AE//BC và AE=BC

=>AD//AE và AD=AE
=>A là trung điểm của DE

9 tháng 9 2018

A B C M D I E

Gọi I là trung điểm của BM \(\Rightarrow IM=\frac{1}{2}BM=\frac{1}{2}AC\)(vì BM = AC)

\(\Delta AIC\)có IM là đường trung tuyến ứng với cạnh AC và IM = 1/2 AC

\(\Rightarrow\Delta AIC\)vuông tại I \(\Rightarrow AI\perp IC\) (1)

AI là đường trung bình của \(\Delta DBM\Rightarrow AI//DM\) (2)

IC là đường trung bình của \(\Delta BME\Rightarrow IC//BE\) (3)

Từ (1), (2) và (3) \(\Rightarrow DM\perp BE.\)

Chúc bạn học tốt.

15 tháng 7 2017

Xét tam giác COA tao có FD là đường trung bình 

=> FD = 1/2 A'C' 

chứng minh tương tự FD = 1/2 AC => A'C' =AC

chứng minh tương tự B'C"= BC; A'B'=AB

vậy tam giác ABC =tam giác A'B'C'

a: D đối xứng M qua AB

nên AD=AM; BD=BM và DM vuông góc với AB

Xét tứ giác AIDE có

góc AID=góc AED=góc EAI=90 độ

Do đó: AIDE là hình chữ nhật

b: AD=AM

BD=BM

mà AD=BD

nên AD=AM=BD=BM

=>ADBM là hình thoi

c: AI=AB/2=3cm

AE=AC/2=4,5cm

SAIDE=3*4,5=13,5cm2

2 tháng 1 2023

Kẻ hình nữa đc ko ạ 

2 tháng 8 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Hình chữ nhật AEDF trở thành hình vuông khi AE = AF

Ta có: AE = 1/2 AB; AF = 1/2 AC

Nên AE = AF ⇒ AB = AC

Vậy nếu ∆ ABC vuông cân tại A thì tứ giác AEDF là hình vuông.

30 tháng 11 2021

a: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

19 tháng 1 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Tứ giác ADBM là hình thoi ⇒ AM // DB và AM = AD

Hay AM // BC và AM = AD (1)

Tứ giác ADCN là hình thoi ⇒ AN // DC và AD = AN

Hay AN // BC và AN = AD (2)

Từ (1) và (2) suy ra: AM trùng với AN hay M, A, N thẳng hàng

Và AM = AN nên A là trung điểm của MN

Vậy điểm M và điểm N đối xứng qua điểm A.