K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2016

1/ Nên nhớ ta có kết luận này: (a - b)² = (b - a)² 
(Khai triển ra thấy ngay hoặc xem ?7 trang 11 SGK Toán 8) 
Vậy biểu thức viết lại dưới dạng: a² + 2ab + b² (Với a = x - y + z và b = y - z) 
(x - y + z)² + (z - y)² + 2(x - y + z)(y - z) 
= (x - y + z)² + 2(x - y + z)(y - z) + (y - z)² 
= (x - y + z + y - z)² 
= x²

2/

b) Đẳng thức <=> (ac)² + (ad)² + (bc)² + (bd)² = (ac)² + (ad)² + (bc)² + (bd) + 2ac.bd - 2ad.bc 
<=> 2.ad.bc - 2.ad.bc = 0 
<=> 0 = 0 ( đúng ) => đẳng thức đã cho đúng 

3/ A= x^2-2x+5=(x^2-2x+1)+4=(x-1)^2 +4 
Nhận xét: (x-1)^2 >=0 (do bình phương của 1 số luôn không âm) 
=> (x-1)^2+4>=4(cộng cả 2 vế với 4) 
hayA>= 4 dấu bằng xảy ra khi và chỉ khi x=1 
vậy   min A =4 <=> x=1 

18 tháng 6 2015

BÀI 1: rút gọn biểu thức    (x- y +z)2 + (z-y)2 +2(x-y+z).(y-z)

(x- y +z)2 + (z-y)2 +2(x-y+z).(y-z)

=(x- y +z)2 +(z-y)2+(x-y+z)(y-z)+(x-y+z)(y-z)

=(x-y+z)2+(x-y+z)(y-z)+(z-y)2+(x-y+z)(y-z)

=(x-y+z)2+(x-y+z)(y-z)+(z-y)2-(x-y+z)(z-y)

=(x-y+z)(x-y+z+y-z)+(z-y)[z-y-(x-y+z)]

=(x-y+z)x+(z-y)(z-y-x+y-z)

=x2-xy+xz+(z-y)(-x)

=x2-xy+xz-xz+xy

=x2

 

 

4 tháng 6 2018

Câu 1: Rút gọn

a. (x+y)2  + (x-y)2

=x2+2xy+y2+x2-2xy+y2=2x2+2y2

b. 2.(x-y) . (x+y) + (x+y)2 + (x-y)2

=2.(x2-y2)+2x2+2y2=4x2

c. (x-y+z)2 + (z-y)2 +2.(x-y+z) . (z-y)

=x2+y2+z2-2xy-2yz+2zx+z2-2yz+y2+2.(xz-xy-yz+y2+z2-zy)

=x2+2y2+2z2-2xy+2zx-4yz+2xz-2xy-4yz+2y2+2z2

=x2+4y2+4z2-4xy-8yz+4xz

Câu 2: Chứng minh

(ac+bd)2 + (ad-bc)2=a2c2+2abcd+b2d2+a2d2-2abcd+b2c2= a2c2+b2d2+a2d2+b2c2 =(a2+b2) . (c2+d2

Câu 1: 

a. \(\left(x+y\right)^2+\left(x-y\right)^2\)

\(=x^2+2xy+y^2+x^2-2xy+y^2\)

\(=2\left(x^2+y^2\right)\)

b. \(2\left(x-y\right)\left(x+y\right)+\left(x+y^2\right)+\left(x-y\right)^2\)

\(=\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x+y+x-y\right)^2\)

\(=\left(2x\right)^2\)

\(=4x^2\)

1 tháng 2 2017

\(A=\frac{a}{ab+a+2}+\frac{b}{bc+b+1}+\frac{2c}{ac+2c+2}\)

\(=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{abc^2}{ac+abc^2+abc}\)

\(=\frac{a}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{abc^2}{ac\left(bc+b+1\right)}\)

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)

\(=\frac{bc+b+1}{bc+b+1}=1\)

a: \(=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)-3abc}{a^2+b^2+c^2-ab-bc-ac}\)

\(=\dfrac{\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-bc-ac}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)}{a^2+b^2+c^2-ab-bc-ac}\)

=a+b+c

b: 

Sửa đề: \(=\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)

\(=\dfrac{\left(x-y\right)^3+z^3+3xy\left(x-y\right)+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{\left(x-y+z\right)\left(x^2-2xy+y^2-xz+yz+z^2\right)+3xy\left(x-y+z\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)

\(=\dfrac{\left(x-y+z\right)\left(x^2+y^2+z^2+xy-xz+yz\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)

\(=\dfrac{x-y+z}{2}\)

15 tháng 9 2023

a) \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}\)

\(=a+b+c\)

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x - y)^2 +...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

23 tháng 6 2018

\(A=\frac{b^3-3b^2c+3bc^2-c^3+c^3-3c^2a+3ca^2-a^3+a^3-3a^2b+3ab^2-b^3}{a^2b-a^2c+b^2c-ab^2+c^2a-bc^2}\)

\(=\frac{-3b^2c+3bc^2-3c^2a+3ca^2-3a^2b+3ab^2}{b^2c-bc^2+c^2a-ac^2+a^2b-ab^2}\)

\(=\frac{-3\left(b^2c-bc^2+c^2a-ca^2+a^2b-ab^2\right)}{b^2c-bc^2+c^2a-ca^2+a^2b-ab^2}=-3\)

\(C=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2}\)

\(=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}=\frac{x+y+z}{2}\)

P/s: bài b sai đề thì pải

23 tháng 6 2018

cám ơn bạn nhé