K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2016

bạc có chép sai đề ko ạ

20 tháng 6 2019

Xét ΔABC vuông tại A(gt)

=>BC2=AB2+AC2(theo định lý ptago)

=>BC2=102+82=164

=>BC≈12,8

Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:

AB2=BHBCBH=AB2BC=8212,8=5

AC2=HCBCHC=AC2BC=10212,8≈7,8

Áp dụng hệ thức liên quan tới đường cao ta có:

AH2=BHCH=5⋅7,8=39

AH≈6,2

P.s:Theo mình là bài mình sai hoặc đúng gì ko biết

20 tháng 7 2017

a) Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (ĐL Py-ta-go)
AB2 = 152  + 252
AB2 = 225 + 625
AB2 = 850
AB  = \(\sqrt{850}\)(cm)

Xét tam giác ABC vuông tại A, có đường cao AH:
=> BA2 = BH.BC
     850 = 25.BC
     BC  = 850:25
     BC  = 34

Xét tam giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2
342  = 850 + AC2
1156 - 850 = AC2
AC2 = 306
AC = \(\sqrt{306}\)(cm)

Ta có BC = BH + HC
         34 = 25 + HC
         HC = 34 - 25
         HC = 9

b) Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (ĐL Py-ta-go)
122 = AH2 + 62
144 = AH2 + 36
AH2 = 144 - 36
AH2 = 108
AH = \(\sqrt{108}\)(cm)

Xét tam giác ABC vuông tại A, có đường cao AH:
=> BA2 = BH.BC
     122 = 6.BC
     144 = 6.BC
     BC = 144:6
     BC = 24 (cm)

Ta có BC = BH + HC
         24 = 6 + HC
         HC = 24 - 6
         HC = 18

Xét tam giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2 (ĐL Py-ta-go)
242 = 122 + AC2
AC2 = 242 - 122
AC2 = 576 - 144
AC2 = 432
AC = \(\sqrt{432}\)(cm)

13 tháng 7 2017

A)   AB=\(5\sqrt{34}\left(cm\right)\)  \(BC=34\left(cm\right)\)   \(CH=9\left(cm\right)\)  \(AC=3\sqrt{34}\left(cm\right)\)

b)  BẠN VIẾT SAI ĐỀ Ở Í b RỒI (AB) KO THỂ NHỎ HƠN (BH) ĐƯỢC

bạn xem lại đi nha !!!

28 tháng 9 2021

28 tháng 9 2021

undefined

Đặt BH=x; CH=y(x<y)

Theo đề, ta có:

x+y=25 và xy=12^2=144

=>x,y là các nghiệm của phương trình:

a^2-25a+144=0

=>a=9; a=16

=>BH=9cm; CH=16cm

AH=căn 9*16=12cm

AB=căn 9*25=15cm

AC=căn 16*25=20cm

19 tháng 9 2021

\(1,\)

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)

\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)

Xét ΔBAC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay AC=12(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=7,2\left(cm\right)\\BH=5,4\left(cm\right)\\CH=9,6\left(cm\right)\end{matrix}\right.\)

13 tháng 10 2021

Áp dụng HTL:

\(\dfrac{1}{AH^2}=\dfrac{1}{51,84}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{144}+\dfrac{1}{AC^2}\\ \Rightarrow\dfrac{1}{AC^2}=\dfrac{1}{81}\Rightarrow AC=9\left(cm\right)\)

Áp dụng PTG \(BC=\sqrt{BA^2+AC^2}=15\left(cm\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=9,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=5,4\left(cm\right)\end{matrix}\right.\)

1 tháng 10 2023

Xét tam giác ABC vuông tại A ta có:

\(AB^2=BC\cdot BH\)

\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{\left(\dfrac{2}{3}\right)^2}{12}=\dfrac{1}{27}\left(cm\right)\)  

Mà: \(BC=CH+BH\)

\(\Rightarrow CH=12-\dfrac{1}{27}=\dfrac{323}{27}\left(cm\right)\)  

\(AC^2=BC\cdot CH\)

\(\Rightarrow AC=\sqrt{BC\cdot CH}=\sqrt{12\cdot\dfrac{323}{27}}=\dfrac{2\sqrt{323}}{3}\left(cm\right)\) 

Mà: \(AH\cdot BC=AB\cdot AC\)

\(\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{\dfrac{2}{3}\cdot\dfrac{2\sqrt{323}}{3}}{12}=\dfrac{\sqrt{323}}{27}\left(cm\right)\)