1, Tính nhanh: 1/3+1/3^2+1/3^3+.....+1/3^100
2,Tìm x để biểu thức sau đạt giá trị nhỏ nhất B=1010 - |3-x|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a) có (x-1)^2 lon hơn hoặc bằng 0
=> ( x-1)^2 + 2008 lớn hơn hoac bang 2008
=> A lớn hơn hoac bang 2008
vay giai tri nho nhát la .2008
b) có | x+4| lon hon hoặc bang 0
=>| x+4| + 1996 lon hon hoặc bang 1996
=> B lon hon hoặc bang 1996
vay B nho nhất la 1996
bai 2
a)-( x+1)^2008 nho hơn hoặc bang 0
=> 2010- (x+ 1)^2008 nho hơn hoặc bang 2010
=> P nho hon hoặc bang 2008
vay gia tri lon nhất của P là 2008
những phần kia tương tự như vậy, nhớ like nhé
a.\(A=\left(x-1\right)^2+2008\)
Ta có: \(\left(x-1\right)^2\ge0\) nên \(A=\left(x-1\right)^2+2008\ge2008\)
Vậy Amin \(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=0+1\)
\(\Leftrightarrow x=1\)
Vậy Amin = 2008 \(\Leftrightarrow\) x = 1
b. \(B=\left|x+4\right|+1996\)
Ta có: \(\left|x+4\right|\ge0\) nên \(B=\left|x+4\right|+1996\ge1996\)
Vậy Bmin\(\Leftrightarrow\) \(\left|x+4\right|=0\)
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=0-4\)
\(\Leftrightarrow x=-4\)
Vậy Bmin = 1996 \(\Leftrightarrow x=-4\)
Ta có: |3-x|\(\le\) 0 => -|3-x|\(\ge\)0
=> 1010-|3-x|\(\ge\)1010 hay B\(\ge\) 1010
Do đó, B đạt giá trị nhỏ nhất là 1010 khi:
3-x=0
x=0+3
x=3
Vậy để B có giá trị nhỏ nhất thì x=3
Bài 1.
a.Ta có: (x - 1)2 ≥ 0 với mọi x ∈ Z
=> (x - 1)2 + 12 ≥ 12 với mọi x ∈ Z
Dấu "=" xảy ra khi (x - 1)2 = 0
=> x - 1 = 0
=> x = 1
Vậy GTNN của A là 12 tại x = 1.
b. Có: |x + 3| ≥ 0 với mọi x ∈ Z
=> |x + 3| + 2020 ≥ 2020 với mọi x ∈ Z
Dấu "=" xảy ra khi |x + 3| = 0
=> x + 3 = 0
=> x = -3
Vậy GTNN của B là 2020 tại x = -3.
Bài 2.
Có: |3 - x| ≥ 0 với mọi x ∈ Z
=> 20 - |3 - x| ≥ 20 với mọi x ∈ Z
Dấu "=" xảy ra khi |3 - x| = 0
=> 3 - x = 0
=> x = 3
Vậy GTLN của Q là 20 tại x = 3.
1. A = ( x - 1 )2 + 12
\(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+12\ge12\forall x\)
Dấu = xảy ra <=> x - 1 = 0 => x = 1
Vậy AMin = 12 khi x = 1
B = | x + 3 | + 2020
\(\left|x+3\right|\ge0\forall x\Rightarrow\left|x+3\right|+2020\ge2020\forall x\)
Dấu = xảy ra <=> x + 3 = 0 => x = -3
Vậy BMin = 2020 khi x = -3
2. ( Bạn LOVE MYSELF sai dấu rồi nhé ... \(\le\)chứ )
Q = 20 - | 3 - x |
\(\left|3-x\right|\ge0\Rightarrow-\left|3-x\right|\le0\)
=> \(20-\left|3-x\right|\le20\forall x\)
Dấu = xảy ra <=> 3 - x = 0 => x = 3
Vậy QMax = 20 khi x = 3
a) A lớn nhất\(\Leftrightarrow\)x=-1 ( vì \(\left(x+1\right)^{2008}\ge0\))
b) B nhỏ nhất\(\Leftrightarrow\)x=1 ( v ì\(\left(x-1\right)^2\ge0\))
c) C lớn nhất\(\Leftrightarrow\)x=3 ( vì \(\left|3-x\right|\ge0\))
d) D nhỏ nhất\(\Leftrightarrow\)x=-4 ( vì \(\left|x+4\right|\ge0\))
a) để A lớn nhất thì (x+1)^2008 phải nhỏ nhất
=>( x+1)^2008 nhỏ nhất =0 ( vì số âm hay dương có số mũ chẵn đều sễ là số dương)
=> x=0-1=-1
để A nhỏ nhất thì (x+1)2008 phải lớn nhất
=> x= 9999999999...................
bạn tự làm tiếp nha
1, Đặt A = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{100}}\)
=> 3A = \(1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}\)
=> 3A - A = 2A = \(1-\frac{1}{3^{100}}\)
=> A = (1 - \(\frac{1}{3^{100}}\) ) : 2