K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2016

(a.b)m = [ a.b.a.b.a.b...] { m thừa số

= m lần a.a nhân m lần b.b = am. bm

(a:b)m = [ (a:b) . (a:b). (a:b)...] { m thừa số

= (a.a.a...) { m lần : ( b.b.b...) { m thừa số

= am : bm 

(am)n = (am.am.am...) { n thừa số 

(giữ nguyên cơ số ) = a(m+m+m+...)  { n số  hạng = am.n

        Tíc mình nha!

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

=>góc BAM=góc CAM

=>AM là phân giác của góc BAC

b: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc BC

c: BM=CM=3cm

=>AM=4cm

 

5 tháng 4 2022

a. Xét tam giác AMB và tam giác AMC:

    AB = AC

    AM chung

    BM = CM (trung tuyến AM hạ từ A đến BC)

   => tam giác AMB = tam giác AMC

=> góc BAM = góc CAM (2 góc tương ứng)=>AM là tia phân giác của góc BACb. đề bài bị thiếuc. ta có BM = CM(cma)   => BM = CM = \(\dfrac{BC}{2}\)\(\dfrac{6}{2}\)= 3(cm)  Áp dụng định lí Pi-ta-go vào tam giác ABM:     AB2 = BM2 + AM2=> AM= AB2 - BM2     AM2 = 52 - 32 = 25 - 9 = 16(cm)=> AM = 4 cm  
4 tháng 7 2018

các bạn giúp mình với

mai tớ kiểm tra rồi

1 tháng 12 2016

AM _I_ AB

N'B _I_ AB

=> AM // N'B

+) Xét tam giác MAC và tam giác CBN có:

MA = CB (gt)

MAC = CBN (= 900)

AC = BN (gt)

=> Tam giác MAC = Tam giác CBN (c.g.c)

=> MC = NC (2 cạnh tương ứng)

+) Xét tam giác M'AB và tam giác NBA có:

M'A = NB (= AC)

M'AB = NBA (= 900)

AB chung

=> Tam giác M'AB = Tam giác NBA (c.g.c)

=> M'B = NA (2 cạnh tương ứng)

+) Xét tam giác MAB và tam giác N'BA có:

MA = N'B (= BC)

MAB = N'BA (= 900)

AB chung

=> Tam giác MAB = Tam giác N'BA (c.g.c)

=> MB = N'A (2 cạnh tương ứng)

+) M'BA = NAB (Tam giác M'AB = Tam giác NBA)

mà 2 góc này ở vị trí so le trong

=> M'B // NA

+) MBA = N'AB (Tam giác MAB = Tam giác N'BA)

mà 2 góc này ở vị trí so le trong

=> MB // N'A

+) Gọi I là giao điểm của MN' và AB

Xét tam giác AMI và tam giác BN'I có:

IAM = IBN' (= 900)

AM = BN' (= BC)

AMI = BN'I (2 góc so le trong, AM // BN')

=> Tam giác AMI và Tam giác BN'I (c.g.c)

=> AI = BI (2 cạnh tương ứng)

=> I là trung điểm của AB (1)

+) Gọi K là giao điểm của M'N và AB

Xét tam giác AKM' và tam giác BKN có:

KAM' = KBN (= 900)

AM' = BN (= BC)

AM'K = BNK (2 góc so le trong, AM' // BN)

=> Tam giác AKM' = Tam giác BKN (c.g.c)

=> AK = BK (2 cạnh tương ứng)

=> K là trung điểm của AB (2)

+) Từ (1) và (2)

=> \(I\equiv K\)

=> MN', M'N và AB đồng quy tại trung điểm của AB

1 tháng 12 2016

dài :V