K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2022

a. Ta có tam giác AHB vuông tại H

 => AB là cạnh huyền

 mà AB = BD

=> BD > BH

=> H nằm giữa B và D

b, c,d tớ ko biết vì chưa đủ tầm

16 tháng 7 2023

ai giúp mình với làm ơn

a: AH<AD

=>H nằm giữa B và D

b: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

BA=BD

=>ΔBAE=ΔBDE

=>EA=ED 

mà BA=BD

nên BE là trung trực của AD

c: góc CAD+góc BAD=90 độ

góc HAD+góc BDA=90 độ

mà góc BAD=góc BDA

nên góc CAD=góc HAD

=>AD là phân giác của góc HAC

24 tháng 1 2018

b. Do BD = BA nên B nằm trên đường trung trực của AD

Do ΔABE = ΔDBE ⇒ AE = ED (hai cạnh tương ứng) (1 điểm)

E nằm trên đường trung trực của AD (1 điểm)

Vậy BE là đường trung trực của AD (0.5 điểm)

9 tháng 4 2019

a, áp dụng định lí py-ta-go ta có:

          \(AB^2+AC^2=BC^2\)

=>\(BC^2\)=64+36=100(cm)

=>BC=10cm

vậy  BC=10cm

b,xét 2t.giác vuông ABE và DBE có:

          EB chung

          AB=BD(gt)

=>t.giác ABE=t.giác DBE(cạnh huyền-cạnh góc vuông)

c,xét 2 t.giác vuông  AEF và t.giác DEC có:

            AE=DE(theo câu b)

            \(\widehat{AEF}\)=\(\widehat{DEC}\)(vì đối đỉnh)

=>t.giác AEF=t.giác DEC(cạnh góc vuông-góc nhọn)

=>AF=DC mà BA=BD(gt) suy ra BF=BC

d,gọi O là giao điểm của BE và CF 

xét t.giác BFO và t.giác BCO có:

            BF=BC(theo câu c)

            \(\widehat{FBO}\)=\(\widehat{CBO}\)(theo câu b)

            BO cạnh chung

=> t.giác BFO=t.giác BCO(c.g.c)

=>CO=OF =>O là trung điểm của CF(1); \(\widehat{COB}\)=\(\widehat{FOB}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{COB}\)=\(\widehat{FOB}\)=90 độ =>BO\(\perp\)CF(2)

Từ (1) và (2) suy ra BE là trung trực của CF

học tốt!

          

24 tháng 5 2019

A C H F E D B

A.Xét ΔABE và ΔDBE có:

Cạnh BE chung

BD = BA

⇒ ΔABE = ΔDBE (cạnh huyền – góc nhọn) 

b. Do BD = BA nên B nằm trên đường trung trực của AD

Do ΔABE = ΔDBE ⇒ AE = ED (hai cạnh tương ứng)

E nằm trên đường trung trực của AD 

Vậy BE là đường trung trực của AD

c. Do ΔABE = ΔDBE ⇒ ∠(ABE) = ∠(EBC) (hai góc tương ứng)

Suy ra BE là tia phân giác của góc ABC 

24 tháng 5 2019

HÌNH VẼ HƠI LỆCH 1 TÍ NHA

a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

BA=BD

=>ΔBAE=ΔBDE

b; BA=BD

EA=ED

=>BE là trung trực của AD

Bài làm

a) Xét tam ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )

hay \(\widehat{ACB}+60^0=90^0\)

=> \(\widehat{ACB}=90^0-60^0=30^0\)

b) Xét tam giác ABE và tam giác DBE có:

\(\widehat{BAE}=\widehat{BDE}=90^0\)

Cạnh huyền: BE chung

Cạnh góc vuông: AB = BD ( gt )

=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )

=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )

=> BI là tia phân giác của góc BAC

Mà I thược BE

=> BE là tia phân giác của góc BAC

Gọi I là giao điểm BE và AD

Xét tam giác AIB và tam giác DIB có:

AB = BD ( gt )

\(\widehat{ABE}=\widehat{DBE}\)( cmt )

BI chung

=> Tam giác AIB = tam giác DIB ( c.g.c )

=> AI = ID                                                                 (1) 

=> \(\widehat{BIA}=\widehat{BID}\)

Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )

Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)

=> BI vuông góc với AD tại I                                                       (2) 

Từ (1) và (2) => BI là đường trung trực của đoạn AD

Mà I thược BE

=> BE là đường trung trực của đoạn AD ( đpcm )

c) Vì tam giác ABE = tam giác DBE ( cmt )

=> AE = ED ( hai cạnh tương ứng )

Xét tam giác AEF và tam giác DEC có:

\(\widehat{EAF}=\widehat{EDC}=90^0\)

AE = ED ( cmt )

\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )

=> Tam giác AEF = tam giác DEC ( g.c.g )

=> AF = DC 

Ta có: AF + AB = BF

          DC + BD = BC

Mà AF = DC ( cmt )

AB = BD ( gt )

=> BF = BC 

=> Tam giác BFC cân tại B

=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\)                                                          (3) 

Vì tam giác BAD cân tại B ( cmt )

=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\)                                               (4)

Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)

Mà Hai góc này ở vị trí đồng vị

=> AD // FC

d) Xét tam giác ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )                              (5)

Xét tam giác DEC vuông tại D có:

\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau )                                (6)

Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)

Ta lại có:

\(\widehat{ABC}>\widehat{EBC}\)

=> AC > EC

Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)

=> EC = 1/2 AC. 

=> E là trung điểm AC

Mà EC = EF ( do tam giác AEF = tam giác EDC )

=> EF = 1/2AC 

=> AE = EC = EF 

Và AE = ED ( cmt )

=> ED = EC

Mà EC = 1/2AC ( cmt )

=> ED = 1/2AC

=> 2ED = AC ( đpcm )

Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!?? 

a: Xét ΔBAE và ΔBDE có

BA=BD

\(\widehat{ABE}=\widehat{DBE}\)

BE chung

Do đó: ΔBAE=ΔBDE

b: Xét ΔBFC có

BH là đường cao

BH là đường phân giác
Do đó: ΔBFC cân tại B

=>BF=BC

c: Xét ΔBDF và ΔBAC có

BD=BA

\(\widehat{DBF}\) chung
BF=BC

Do đó: ΔBDF=ΔBAC

=>DF=AC

Ta có: AE+EC=AC

DE+EF=DF

mà AE=DE(ΔBAE=ΔBDE)

và AC=DF

nên EC=EF

Ta có: ΔBAE=ΔBDE

=>\(\widehat{BAE}=\widehat{BDE}\)

=>\(\widehat{BDE}=90^0\)

=>DE\(\perp\)BC

Xét ΔEAF vuông tại A và ΔEDC vuông tại E có

EA=ED

EF=EC

Do đó: ΔEAF=ΔEDC

=>\(\widehat{AEF}=\widehat{DEC}\)

mà \(\widehat{DEC}+\widehat{DEA}=180^0\)(hai góc kề bù)

nên \(\widehat{DEA}+\widehat{AEF}=180^0\)

=>D,E,F thẳng hàng

20 tháng 4 2018

c. Do ΔABE = ΔDBE ⇒ ∠(ABE) = ∠(EBC) (hai góc tương ứng)

Suy ra BE là tia phân giác của góc ABC (1 điểm)