Cho hai dường thẳng aa' va bb' song song ,bị cắt bởi một cát tuyến tại M và N.Kể hai tia phân giác My và Nx của hai góc a'MN và bNM.Chứng tỏ My // Nx.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m'm//n'n
=> góc mMN = góc n'NM (slt)
My là phân giác => yMN=1/2 mMN
Nx là pg => xNM=1/2 n'NM
=> góc yMN= góc xNM
mà 2 góc này vị trí slt => My//Nx
Ta có
\(\widehat{n'NM}=\widehat{mMN}\) (1)
( Hai góc so le trong )
Mặt khác
\(\widehat{N1}=\widehat{N2}=\frac{1}{2}.\widehat{n'NM}\) ( Nx là tia phân giác ) (2)
\(\widehat{M1}=\widehat{M2}=\frac{1}{2}.\widehat{mMN}\) ( My là tia phân giác ) (3)
Từ (1) ;(2) và (3)
=>\(\widehat{M2}=\widehat{N2}\)
Mà \(\widehat{M2};\widehat{N2}\) là 2 góc so le trong
=>My//Nx (đpcm )
a, Nếu tia At không cắt yy'
=> At // yy'
=> At trung với Ax (vì xx' // yy')
Mà At là phân giác góc xAb
=> At nằm giữa Ax và AB
=> At không trùng Ax
=> At cắt yy'
b,
Bạn xem lại đề. C ở đâu vậy?
Gọi A, B, C lần lượt là chân đường vuông góc kẻ từ I đến a, b, c. Xét hai góc trong cùng phía E và F. Do I thuộc tia phân giác của góc E nên IA = IC. (1)
Do I thuộc tia phân giác của góc F nên IC = IB. (2)
Từ (1) và (2) suy ra IA = IB = IC, tức là I cách đều ba đường thẳng a, b, c.