K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

chưa hok đến lớp 9 nên chưa bít!!!

56546454756658578768967565324456675676876876768768

10 tháng 9 2016

0,796544

NV
20 tháng 3 2022

Phương trình có nghiệm khi:

\(\Delta'=\left(m+1\right)^2-\left(m^2+m+1\right)\ge0\)

\(\Rightarrow m\ge0\)

Khi đó: \(\left\{{}\begin{matrix}x_1=m+1-\sqrt{m}\\x_2=m+1+\sqrt{m}\end{matrix}\right.\)

13 tháng 5 2018

(2x -  7  )(x 10 + 3) = 0 ⇔ 2x -  7  = 0 hoặc x 10  + 3 = 0

2x -  7  = 0 ⇔ x =  7 /2 ≈ 1,323

x 10  + 3 = 0 ⇔ x = - 3/ 10  ≈ - 0,949

Phương trình có nghiệm x = 1,323 hoặc x = - 0,949

13 tháng 1 2023

Ptr có: `\Delta'=[-(m-1)^2]+4m=m^2-2m+1+4m=(m+1)^2 >= 0`

  `=>{(x_1+x_2=[-b]/a=2m-2),(x_1.x_2=c/a=-4m):}`

  Để ptr có ít nhất `1` nghiệm không âm

`<=>2` nghiệm đều `>= 0`, hoặc có duy nhất `1` nghiệm và `>= 0` hoặc `1` nghiệm `>= 0` và `1` nghiệm `< 0`

`@TH1: 2` nghiệm đều `>= 0`

    `=>{(x_1.x_2 >= 0),(x_1+x_2 >= 0):}`

`<=>{(-4m >= 0),(2m-2 >= 0):}`

`<=>{(m <= 0),(m >= 1):}=>` Không có `m` t/m

`@TH2:` Có duy nhất `1` nghiệm và nghiệm đó `>= 0`

    `=>{((m+1)^2=0),(x=[-b']/a):}`

`<=>{(m=-1),(x=m-1):}`

`<=>{(m=-1),(x=-2):}` (ko t/m `x >= 0`)

`@TH3:` Có `2` nghiệm pb có `1` nghiệm `< 0` và `1` nghiệm `>= 0`

  `=>{(m+1 \ne 0),(x_1.x_2 < 0):}`

`<=>{(m \ne -1),(-4m < 0):}`

`<=>{(m \ne -1),(m > 0):}`

`<=>m > 0`

Vậy `m > 0` thì ptr đã cho có ít nhất `1` nghiệm không âm.

NV
11 tháng 4 2022

Chắc là tìm n?

\(\Delta'=\left(n-1\right)^2+n+1=n^2-n+2=\left(n-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0;\forall n\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm pb với mọi n

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(n-1\right)\\x_1x_2=-n-1\end{matrix}\right.\)

Đặt \(P=\left|x_1-x_2\right|\)

\(\Rightarrow P=\sqrt{\left(x_1-x_2\right)^2}=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{4\left(n-1\right)^2+4\left(n+1\right)}=2\sqrt{n^2-n+2}\)

\(=2\sqrt{\left(n-\dfrac{1}{2}\right)^2+\dfrac{7}{4}}\ge\sqrt{7}\)

\(P_{min}=\sqrt{7}\) khi \(n-\dfrac{1}{2}=0\Rightarrow n=\dfrac{1}{2}\)

17 tháng 5 2023

∆ = m² - 4(m - 5)

= m² - 4m + 5

= (m² - 4m + 4) + 1

= (m - 2)² + 1 > 0 với mọi m

Phương trình luôn có 2 nghiệm phân biệt

Theo Viét ta có:

x₁ + x₂ = m (1)

x₁.x₂ = m - 5 (2)

x₁ + 2x₂ = 1 (3)

Lấy (3) - (1) ta được x₂ = 1 - m thay vào (1) ta được

x₁ + 1 - m = m

⇔ x₁ = 2m - 1

Thay x₁ = 2m - 1 và x₂ = 1 - m vào (2) ta được:

(2m - 1)(1 - m) = m - 5

⇔ 2m - 2m² - 1 + m - m + 5 = 0

⇔ -2m² + 2m + 5 = 0

∆ = 4 - 4.(-2).5

= 44

m₁ = -1 + √11

m₂ = -1 - √11

Vậy m = -1 + √11; m = -1 - √11 thì phương trình đã cho có hai nghiệm thỏa mãn x₁ + 2x₂ = 1

=>(x1+x2)^2+x1x2=1

=>(-2m)^2+(-3)=1

=>4m^2=4

=>m=-1 hoặc m=1

25 tháng 5 2023

Do a = 1 và c = -3

⇒ a và c trái dấu

⇒ Phương trình luôn có hai nghiệm phân biệt

Theo Viét, ta có:

x₁ + x₂ = -2m

x₁x₂ = -3

Lại có:

x₁² + x₂² + 3x₁x₂ = 1

⇔ x₁² + 2x₁x₂ + x₂² + x₁x₂ = 1

⇔ (x₁ + x₂)² + x₁x₂ = 1

⇔ (-2m)² - 3 = 1

⇔ 4m² = 4

⇔ m² = 1

⇔ m = -1 hoặc m = 1

Vậy m = -1; m = 1 thì phương trình đã cho có hai nghiệm phân biệt x₁, x₂ thỏa mãn: x₁² + x₂² + 3x₁x₂ = 1

11 tháng 12 2021

<=> x -2 = 0

      x +9 =0

<=> x = 2 , x = -9 

Vậy .............

11 tháng 12 2021

\(\left(x-2\right)\left(x+9\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\x+9=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-9\end{matrix}\right.\)

x1+x2=2m+2; x1x2=m^2+4

x1^2+2(m+1)x2<=2m^2+20

=>x1^2+x2(x1+x2)<=2m^2+20

=>x1^2+x2x1+x2^2<=2m^2+20

=>(x1+x2)^2-x1x2<=2m^2+20

=>(2m+2)^2-(m^2+4)<=2m^2+20

=>4m^2+8m+4-m^2-4-2m^2-20<=0

=>m^2-8m-20<=0

=>m<=-10 hoặc m>2

31 tháng 3 2023

\(x^2-2\left(m+1\right)x+m^2+4=0\left(1\right)\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta'>0\) hay \(\Delta'=\left(m+1\right)^2-m^2-4=m^2+2m+1-m^2-4=2m-4>0\Leftrightarrow m>2\)

Theo hệ thức Viét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=m^2+4\end{matrix}\right.\)

Vì \(x_1^2\) là nghiệm của phương trình (1) nên ta có : \(x_1^2-2\left(m+1\right)x+m^2+4=0\Leftrightarrow x_1^2=2\left(m+1\right)x_1-m^2-4\)

Ta lại có : \(x_1^2+2\left(m+1\right)x_2\le2m^2+20\)

\(\Leftrightarrow2\left(m+1\right)x_1-m^2-4+2\left(m+1\right)x_2\le2m^2+20\)

\(\Leftrightarrow2\left(m+1\right)\left(x_1+x_2\right)-m^2-4\le2m^2+20\)

\(\Leftrightarrow4\left(m+1\right)^2-m^2\le2m^2+20\)

\(\Leftrightarrow4\left(m^2+2m+1\right)-m^2\le2m^2+20\)

\(\Leftrightarrow m^2+8m-16\le0\)

\(\Leftrightarrow-10\le m\le2\)

Kết hợp điều kiện....