Cho a duơng và b duơng và a+b bằng a.b. Tìm giá tẹi nhỏ nhất của a+b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 1/a-1/b=(b-a)/ab ( quy đồng lên)
1/a-1/b=1/(a-b)
⇔ (b-a)/ab=1/(a-b)
⇔ -(a-b)²=ab ( nhân chéo)
⇔ -a²-b²+2ab=ab
⇔ ab=a²+b² (*)
Vì a,b dương => a²+b² ≥ 4ab ( bất đẳng thức cô si)
=>(*) không thõa mãn . Vậy không có cặp số dương a,b thõa mãn đề ra
Chọn câu trả lời hay nhất nhé . Mình làm đúng đấy
\(A=\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}+1-1\ge\left(a+b+1\right)2\sqrt{\left(ab\right)^2}+\frac{\left(2+1\right)^2}{a+b+1}-1\)
\(=2\left(a+b+1\right)+\frac{9}{a+b+1}-1\ge2\sqrt{ab}+1+2\sqrt{\frac{9\left(a+b+1\right)}{a+b+1}}-1\ge2+6=8\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}a^2=b^2\left(1\right)\\\frac{2}{a+b}=1\left(2\right)\\a+b+1=\frac{9}{a+b+1}\left(3\right)\end{cases}}\)
pt \(\left(1\right)\)\(\Leftrightarrow\)\(a=b\) ( vì a, b > 0 )
pt \(\left(2\right)\)\(\Leftrightarrow\)\(a=b=1\)
pt \(\left(3\right)\)\(\Leftrightarrow\)\(\left(a+b+1\right)^2=9\)\(\Leftrightarrow\)\(a+b+1=3\) ( đúng vì \(a=b=1\) )
Vậy GTNN của \(A\) là \(8\) khi \(a=b=1\)
Chúc bạn học tốt ~