Cho điểm E thuộc miền trong của hình vuông ABCD sao cho góc EBC=ECB=15 độ và F thuộc nửa mặt phẳng không chứa điểm E bờ là đường thẳng DC sao cho tam giác
DFC là tam giác đều. Chứng minh các điểm B, F, E thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì t/g FDC là t/g đều nên DF=DC=FC
Mà DC=AD=AB=BC suy ra FC=BC
Suy ra t/g FCB cân tại C =>góc CFB=góc CBF (1)
Mặt khác có: góc FCB =góc DCB + góc DCF = 900 + 600 =1500
Suy ra : góc CFB + góc CBF =300 (2)
Từ (1) và (2) suy ra : góc CFB=góc CBF =150 (3)
Theo bài ra ta có : góc EBC =150 (4)
Từ (3) và (4) suy ra 3 diểm B ,E ,F thẳng hàng
a, Trong hình vuông ABCD dựng tam giác EMB đều.
MBA^=ABC^−CBE^−EBM^=90o−15o−60o=15oMBA^=ABC^−CBE^−EBM^=90o−15o−60o=15o
Dễ dàng c/m đc:
ΔΔ CEB=ΔΔ BMA (c.g.c)
\RightarrowBMA^=BEC^=150oBMA^=BEC^=150o
\RightarrowBMA^=EMA^=150oBMA^=EMA^=150o
\Rightarrow
ΔΔ EMA=ΔΔ BMA (c.g.c)
\Rightarrow AE=AB
Tương tự c/m đc DE=DC
\Rightarrow DE=AE(1)
Dễ dàng c/m đc DAE^=60o(2)DAE^=60o(2)
Từ (1) và (2) \Rightarrow Tam giác AED đều.
Do tam giác FCD đều nên FC = DC = CB. Do đó tam giác BCF cân tại C nên \(\widehat{FBC}=\dfrac{180^o-\widehat{FCB}}{2}=\dfrac{180^o-150^o}{2}=15^o=\widehat{EBC}\).
Vậy B, E, F thẳng hàng.
Trúc Giang Bạn cần giải thích đoạn nào vậy?
Tam giác BCF cân tại C nên \(\widehat{FBC}=\widehat{BFC}\).
Do đó \(\widehat{FBC}+\widehat{BFC}+\widehat{FCB}=180^o\Leftrightarrow\widehat{FCB}+2\widehat{FBC}=180^o\Leftrightarrow\widehat{FBC}=\dfrac{180^o-\widehat{FCB}}{2}\).
Do đó \(\widehat{FBC}=\widehat{EBC}\) mà E, F cùng thuộc 1 nửa mf bờ BC nên E, B, F thẳng hàng.