K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2022

\(\Delta=\left(-6\right)^2-4m=36-4m\)

Để pt có 2 nghiệm phân biệt thì \(36-4m>0\)

                                                   \(\Leftrightarrow m< 9\)

Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1.x_2=m\end{matrix}\right.\)

\(\left(x_1\right)^3+\left(x_2\right)^3=72\)

\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1^2-x_1.x_2+x_2^2\right)=72\)

\(\Leftrightarrow\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1.x_2\right]=72\)

\(\Leftrightarrow6\left(6^2-3m\right)=72\)

\(\Leftrightarrow36-3m=12\)

\(\Leftrightarrow-3m=-24\)

\(\Leftrightarrow m=8\left(tm\right)\)

2 tháng 5 2023

Phương trình đã cho có nghiệm phân biệt khi : 

\(\Delta'=m^2-\left(m^2+2m+3\right)=-2m-3>0\)

\(\Leftrightarrow m< -\dfrac{3}{2}\)(*)

Hệ thức Viette : \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=m^2+2m+3\end{matrix}\right.\)

Có \(x_1^3+x_2^3=108\)

\(\Leftrightarrow\left(x_1+x_2\right).\left(x_1^2-x_1x_2+x_2^2\right)=108\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=108\)

\(\Leftrightarrow-8m^3+6m\left(m^2+2m+3\right)=108\)

\(\Leftrightarrow m^3-6m^2-9m+54=0\)

\(\Leftrightarrow\left(m-6\right).\left(m-3\right).\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=6\\m=\pm3\end{matrix}\right.\)

Kết hợp (*) được m = -3 thỏa mãn

Δ=(-2)^2-4(m-1)

=-4m+4+4

=-4m+8

Để phương trình có hai nghiệm phân biệt thì -4m+8>0

=>-4m>-8

=>m<2

x1^2+x2^2-3x1x2=2m^2+|m-3|

=>2m^2+|m-3|=(x1+x2)^2-5x1x2=2^2-5(m-1)=4-5m+5=-5m+9

TH1: m>=3

=>2m^2+m-3+5m-9=0

=>2m^2+6m-12=0

=>m^2+3m-6=0

=>\(m\in\varnothing\)

TH2: m<3

=>2m^2+3-m+5m-9=0

=>2m^2+4m-6=0

=>m^2+2m-3=0

=>(m+3)(m-1)=0

=>m=1 hoặc m=-3

15 tháng 12 2018

Đáp án B

Đặt t = 2 x → t 2 − 2 m . t + 2 m + 3 = 0 1

Phương trình ban đầu có 2 nghiệm ⇔ 1  có 2 nghiệm dương phân biệt

Suy ra 

x 1 + x 2 = log 2 t 1 + log 2 t 2 = log 2 t 1 t 2 = 4 ⇒ t 1 t 2 = 16 ⇔ 2 m + 3 = 16 ⇔ m = 13 2

Kết hợp điều kiện  m > 3 ⇒ m = 13 2

3 tháng 4 2017

20 tháng 10 2019

22 tháng 8 2019

a) Với m= 2, ta có phương trình:  x 2 + 2 x − 3 = 0

Ta có:  a + b + c = 1 + 2 − 3 = 0                                                             

Theo định lý Viet, phương trình có 2 nghiệm: 

x 1 = 1 ;   x 2 = − 3 ⇒ S = 1 ;   − 3 .                                                                             

b) Chứng minh rằng phương trình luôn có nghiệm  ∀ m .

Ta có:  Δ ' = m − 1 2 − 1 + 2 m = m 2 ≥ 0 ;    ∀ m                                           

Vậy phương trình luôn có nghiệm  ∀ m .                                              

c) Theo định lý Viet, ta có: x 1 + x 2 = − 2 m + 2 x 1 . x 2 = 1 − 2 m                                                             

Ta có:

x 1 2 . x 2 + x 1 . x 2 2 = 2 x 1 . x 2 + 3 ⇔ x 1 . x 2 x 1 + x 2 − 2 = 6 ⇒ 1 − 2 m − 2 m + 2 − 2 = 6 ⇔ 2 m 2 − m − 3 = 0                  

Ta có: a − b + c = 2 + 1 − 3 = 0 ⇒ m 1 = − 1 ;   m 2 = 3 2                                                  

Vậy m= -1 hoặc m= 3/2 

27 tháng 9 2017

Chọn A.

Ta có: 

Phương trình (*) là phương trình bậc hai ẩn 2x có: 

Phương trình (*) có nghiệm 

Áp dụng định lý Vi-ét ta có: 

Do đó x1+ x2 = 3 khi 23 = 2m hay m = 4

Thử lại ta được m = 4 thỏa mãn.

Δ=5^2-4(m-3)

=25-4m+12=-4m+27

Để phương trình có 2 nghiệm thì -4m+27>=0

=>m<=27/4

Theo đề, ta có: x1-2<0 và x2-2>0

=>(x1-2)(x2-2)<0

=>x1x2-2(x1+x2)+4<0

=>m-3-2*(-5)+4<0

=>m+1+10<0

=>m<-11

5 tháng 2 2023

Để phương trình (1) có nghiệm thì:

\(\Delta'\ge0\Rightarrow\left(m-1\right)^2-\left(2m-5\right)\ge0\)

\(\Leftrightarrow m^2-2m+1-2m+5\ge0\)

\(\Leftrightarrow\left(m-2\right)^2+2\ge0\) (luôn đúng)

Vậy với \(\forall m\) thì phương trình (1) luôn có nghiệm.

Theo định lí Vi-et cho phương trình (1) ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)

Ta có: \(x_1< 2< x_2\Rightarrow\left\{{}\begin{matrix}x_1-2< 0\\x_2-2>0\end{matrix}\right.\)

\(\Rightarrow\left(x_1-2\right)\left(x_2-2\right)< 0\)

\(\Rightarrow x_1x_2-2\left(x_1+x_2\right)+4< 0\)

\(\Rightarrow2m-5-2.2\left(m-1\right)+4< 0\)

\(\Rightarrow2m-5-4m+4+4< 0\)

\(\Rightarrow-2m+3< 0\)

\(\Rightarrow m>\dfrac{3}{2}\)