K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔIBA vuông tại I và ΔABD vuông tại A có

góc IBA chung

=>ΔIBA đồng dạng với ΔABD

b: Xét ΔBAD vuông tại A và ΔBHE vuông tại H có

góc ABD=góc HBE

=>ΔBAD đồng dạng với ΔBHE

=>BA/BH=BD/BE

=>BA*BE=BH*BD

d: góc BIA=góc BHA=90 độ

=>BHIA nội tiếp

góc IAH=góc IBH

góc IHA=góc ABI

mà góc IBH=góc ABI

nên góc IAH=góc IHA

=>IA=IH

12 tháng 7 2021

cho mình hỏi là bạn có ghi sai đề hok ạ? tại vì có AD rồi, nhưng mà câu a lại  nói tính AD

12 tháng 7 2021

Mk nhầm bên trên là AB=6cm

a) Xét ΔBAH vuông tại H và ΔBCA vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔBAH\(\sim\)ΔBCA(g-g)

12 tháng 6 2021

jup mk với mik cần gấp

 

12 tháng 6 2021

Câu c) sai đề phải k ạ?? EA/EA 

 

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{ABC}\) chung

Do đó: ΔAHB∼ΔCAB(g-g)

AH
Akai Haruma
Giáo viên
7 tháng 3 2023

Lời giải:

Do $BE$ là phân giác $\widehat{ABH}$ nên theo tính chất tia phân giác ta có:

$\frac{EH}{EA}=\frac{BH}{BA}(1)$

Xét tam giác $BAH$ và $BCA$ có:

$\widehat{B}$ chung

$\widehat{BHA}=\widehat{BAC}=90^0$

$\Rightarrow \triangle BAH\sim \triangle BCA$ (g.g)

$\Rightarrow \frac{BH}{BA}=\frac{BA}{BC}(2)$

Do $BD$ là phân giác $\widehat{BAC}$ nên:

$\frac{AD}{DC}=\frac{BA}{BC}(3)$

Từ $(1); (2); (3)\Rightarrow \frac{EH}{EA}=\frac{DA}{DC}$ (đpcm)

AH
Akai Haruma
Giáo viên
7 tháng 3 2023

Hình vẽ: