cho tam giác ABC vuông tại A,có đường cao AH,đường phân giác BD.kẻ AI vuông góc BD tại I.AH cắt BD tại E
a)chứng minh:tam giác ABI đống dạng tam giác ABD
b)chứng minh:AB.BE=BD.BH
c)chứng minh:BHI=BDC
d)chứng minh:tam giác AHI cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho mình hỏi là bạn có ghi sai đề hok ạ? tại vì có AD rồi, nhưng mà câu a lại nói tính AD
a) Xét ΔBAH vuông tại H và ΔBCA vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔBAH\(\sim\)ΔBCA(g-g)
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{ABC}\) chung
Do đó: ΔAHB∼ΔCAB(g-g)
Lời giải:
Do $BE$ là phân giác $\widehat{ABH}$ nên theo tính chất tia phân giác ta có:
$\frac{EH}{EA}=\frac{BH}{BA}(1)$
Xét tam giác $BAH$ và $BCA$ có:
$\widehat{B}$ chung
$\widehat{BHA}=\widehat{BAC}=90^0$
$\Rightarrow \triangle BAH\sim \triangle BCA$ (g.g)
$\Rightarrow \frac{BH}{BA}=\frac{BA}{BC}(2)$
Do $BD$ là phân giác $\widehat{BAC}$ nên:
$\frac{AD}{DC}=\frac{BA}{BC}(3)$
Từ $(1); (2); (3)\Rightarrow \frac{EH}{EA}=\frac{DA}{DC}$ (đpcm)
a: Xét ΔIBA vuông tại I và ΔABD vuông tại A có
góc IBA chung
=>ΔIBA đồng dạng với ΔABD
b: Xét ΔBAD vuông tại A và ΔBHE vuông tại H có
góc ABD=góc HBE
=>ΔBAD đồng dạng với ΔBHE
=>BA/BH=BD/BE
=>BA*BE=BH*BD
d: góc BIA=góc BHA=90 độ
=>BHIA nội tiếp
góc IAH=góc IBH
góc IHA=góc ABI
mà góc IBH=góc ABI
nên góc IAH=góc IHA
=>IA=IH