Cho biểu thức :B= n+3/n+5
Tìm n để B là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Với \(n\in Z\)Ta có \(3\in Z;n+2\in Z\)
Do đó để \(A=\frac{3}{n+2}\)là phân số thì \(n+2\ne0\Leftrightarrow n\ne-2\)
Vậy với n thuộc Z và n khác -2 thì A là phân số
b;Để A nguyên \(\Leftrightarrow3⋮n+2\Rightarrow n+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{1;-3;1;-5\right\}\)
Vậy.................................
P/s : thêm đk nữa bn ơi :)
a) Để A là phân số thì n - 3 \(\ne\)0 => n \(\ne\)3
b) Để A là một số nguyên thì 5 \(⋮\)n - 3 => n - 3 \(\in\)Ư(5) = {1; -1; 5; -5}
Lập bảng :
n - 3 | 1 | -1 | 5 | -5 |
n | 4 | 2 | 8 | -2 |
Vậy ...
Để A = 3/n-2 là phân số thì n - 2 ≠ 0 => n ≠ 2 => n = { n ∈ N | n ≠ 2 }
Để 3/n-2 ∈ Z 3 ∈ B ( n - 2 ) <=> n - 2 ∈ Ư ( 3 ) = { - 6 ; - 1 ; 1 ; 3 }
=> n - 2 ∈ { - 6 ; - 1 ; 1 ; 3 }
=> n = { - 4 ; 1 ; 3 ; 5 }
a) Ta có :
Để : \(A\text{=}\dfrac{n-2}{n+5}\) là phân số \(\Leftrightarrow A\text{=}mẫu\left(n+5\right)\ne0\)
\(\Leftrightarrow n\ne-5\)
Vậy để A là phân số \(\Leftrightarrow n\ne5\)
b) Ta có : \(A\text{=}\dfrac{n-2}{n+5}\text{=}\dfrac{n+5-7}{n+5}\text{=}\dfrac{n+5}{n+5}-\dfrac{7}{n+5}\text{=}1-\dfrac{7}{n+5}\)
Để : \(A\in Z\Leftrightarrow\dfrac{7}{n+5}\in Z\Leftrightarrow n+5\inƯ\left(7\right)\)
mà \(Ư\left(7\right)\text{=}\left(1;-1;7;-7\right)\)
\(\Rightarrow n\in\left(-4;-6;2;-12\right)\)
\(Vậy...\)
a, Để B là phân số <=> 3n-3 khác 0 <=> 3n khác 3 <=> n khác 1
b, Để B nguyên thì 5n+2 chia hết cho 3n-3
<=> 15n+6 chia hết cho 3n-3
<=> 15n+6-5(3n-3) chia hết cho 3n-3
<=> 21 chia hết cho 3n-3
<=> 7 chia hết cho n-1
=> n-1 thuộc Ư(7) = {1;-1;7;-7}
=> n thuộc {2;0;8;-6}
a, Để B là phân số <=> 3n-3 khác 0 <=> 3n khác 3 <=> n khác 1
b, Để B nguyên thì 5n+2 chia hết cho 3n-3
<=> 15n+6 chia hết cho 3n-3
<=> 15n+6-5(3n-3) chia hết cho 3n-3
<=> 21 chia hết cho 3n-3
<=> 7 chia hết cho n-1
=> n-1 thuộc Ư(7) = {1;-1;7;-7}
=> n thuộc {2;0;8;-6}
HT
Để biểu thức B = 4 n - 3 là phân số thì n - 3 ≠ 0 ⇒ n ≠ 3
Vậy n ≠ 3 .
B = n-3/n-5 = n-5 + 2/n - 5 = 1 + \(\dfrac{2}{n-5}\)
để B là số nguyên thì 2/n-5 là số nguyên ( vì 1 là số nguyên ) mà 2 không đổi
=> 2 chia hết cho n - 5
=> n - 5 là Ư(2) = { 1 , 2 ,-1 ,-2 }
=> n thuộc { 6 ,7 , 4 , 3}
B = n-3/n-5 = n-5 + 2/n - 5 = 1 + 2n−52n−5
để B là số nguyên thì 2/n-5 là số nguyên ( vì 1 là số nguyên ) mà 2 không đổi
=> 2 chia hết cho n - 5
=> n - 5 là Ư(2) = { 1 , 2 ,-1 ,-2 }
=> n thuộc { 6 ,7 , 4 , 3}