cho tam giác ABC vuông tại A đường cao AH ke tia Bx // AC.Bx cat nhau tai AH tai D.
a.cho AB=15 BC=25 tinh HB,HA,HD
b.c/m BH.BC=AH.AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phần a dựa vào hệ thức lượng trong tam giác vuông
Phần b chứng minh tam giác đồng dạng thì sẽ ra
Phần c, d tớ chưa nghĩ ra
tu ve hinh :
a, AC = AB => tamgiac ABC can tai A (dn)
=> goc ABC = goc ACB (tc)
xet tam giac ABH va tamgiac ACH co : goc AHC = goc AHB do AH | BC (gt)
=> tam giac ABH = tamgiac ACH (ch - gn) (1)
b, tamgiac AHB vuong tai H do AH | BC (gt)
=> AB2 = AH2 + BH2
(1) => BH = HC ma BC = 6 (gt)=> BH = 3
BA = 5 (gt)
=> AH2 = 52 - 32
=> AH2 = 16
=> AH = 4 do AH > 0
c, xet tamgiac BMH va tamgiac NCH co : goc BMH = goc NCH = 90o do MH | AB va HN | AC (gt)
goc ABC = goc ACB (cmt) va BH = HC (cmt)
=> tamgiac BMH = tamgiac NCH (ch - gn)
=> MH = HN (dn)
=> tamgiac MNH can tai H (dn)
d, cm theo truong hop ch - gn di, moi tay qa
Giải
( Bạn tự vẽ hình nhé )
a, \(AB=AC\) \(\Rightarrow\)\(\Delta ABC\) cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Xét \(\Delta ABH\) và \(\Delta ACH\) có : \(\widehat{AHC}=\widehat{AHB}\) do \(AH\perp BC\)
\(\Delta ABH=\Delta ACH\) (1) [ đpcm]
b, \(\Delta AHB\) vuông tại H do \(AH\perp BC\)
\(\Rightarrow AB^2=AH^2+BH^2\)
Từ (1) suy ra BH = HC mà BC = 6 nên BH = 3
\(\Rightarrow\)BA = 5
\(\Rightarrow AH^2=5^2-3^2\)
\(\Rightarrow AH^2=25-9\)
\(\Rightarrow AH^2=16\)
\(\Rightarrow AH=\sqrt{16}\)
\(\Rightarrow AH=4cm\)
\(\Rightarrow\) AH = 4cm do AH > 0
c, Xét \(\Delta BMH\) và \(\Delta NCH\) có :\(\widehat{BMH}=\widehat{NCH}=90^0\) do \(MH\perp AB\) va \(HN\perp AC\)
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)và \(BH=HC\)
\(\Rightarrow\Delta BHM=\Delta NCH\)
\(\Rightarrow MH=HN\)
\(\Rightarrow\Delta MNH\) cân tại H \(\left(đpcm\right)\)
d, ...
a: Xét ΔABH vuông tại H và ΔADH vuông tại H có
AH chung
HB=HD
Do đó: ΔABH=ΔADH
b: Xét ΔDAE có
DH là đường cao
DH là đường trung tuyến
Do đó: ΔDAE cân tại D