K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^4+y^4+z^4\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\ge\frac{\left[\frac{\left(x+y+z\right)^2}{3}\right]^2}{3}=\frac{\left(x+y+z\right)^4}{27}=\frac{16}{27}..\)

Min = 16/27 khi x =y =z = 2/3

6 tháng 9 2016

\(\left(x+y+z\right)^2=x^2+y^2+z^2+xy+yz+zx=2\)

mà \(xy+yz+zx\le x^2+y^2+z^2\)

\(\Rightarrow x^2+y^2+z^2\ge\frac{4}{3}\)

Tương tự:\(x^4+y^4+z^4\ge\left(x^2+y^2+z^2\right)\cdot\frac{1}{3}\ge\frac{4^2}{3^2}\cdot\frac{1}{3}=\frac{16}{27}\)

Dấu ''='' xảy ra khi x=y=z=2/3

8 tháng 9 2019

Ta co:\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{9}{3}=3\) ; \(xyz\le\frac{\left(x+y+z\right)^3}{27}=\frac{27}{27}=1\)

\(P=x^4+y^4+z^4+12\left(1-z-y+yz-x+xz+xy-xyz\right)\)

\(=x^4+y^4+z^4+12-12xyz-12\left(x+y+z\right)+12\left(xy+yz+zx\right)\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}+12-12.\frac{\left(x+y+z\right)^3}{27}-12.3+12\left(xy+yz+zx\right)\)

\(\ge3+12-12.1-36+4.\left(xy+yz+zx\right)\left(x+y+z\right)\)

\(\ge-33+4.\left(xy+yz+zx\right)\left(\frac{x+y+z}{xyz}\right)\)

\(=-33+4.\left(xy+yz+zx\right)\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\ge-33+4\left(xy.\frac{1}{xy}+yz.\frac{1}{yz}+zx.\frac{1}{zx}\right)^2\)

\(=-33+4\left(1+1+1\right)^2=-33+36=3\)

Dau '=' xay ra khi \(x=y=z=1\)

Vay \(P_{min}=3\)khi \(x=y=z=1\)

10 tháng 3 2018

Cách 1:

Áp dụng tính chất cuẩ BĐT, Ta có: \(x^4+y^4+z^4\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)

Lại có: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

=> \(x^4+y^4+z^4\ge\frac{\left(\frac{x+y+z}{3}\right)^2}{3}=\frac{16}{27}\)

=> GTNN của \(x^4+y^4+z^4=\frac{16}{27}\) đạt được khi x=y=z=2/3

10 tháng 3 2018

bạn còn cách 2 ko?

31 tháng 3 2023

mình chịu

31 tháng 3 2023

không biết làm

1 tháng 4 2020

SỐ THỤC THUỘC I ĐÚNG KHÔNG

27 tháng 11 2019

sai đè nha:4\(\sqrt{yz}\)

27 tháng 11 2019

cây gì lớn nhất hành tinh

1 tháng 9 2021

Chắc dùng Mincowski

17 tháng 12 2020

Xét hiệu \(x^4-15x+14=\left(x-1\right)\left(x-2\right)\left(x^2+3x+7\right)\le0\)

\(\Rightarrow x^4\le15x-14\).

Tương tự: \(y^4\le15y-14;z^4\le15z-14\).

Cộng vế với vế của các bất đẳng thức trên kết hợp giả thiết x + y + z = 5 ta có:

\(P=x^4+y^4+z^4\le15\left(x+y+z\right)-42=33\).

Đẳng thức xảy ra khi và chỉ khi (x, y, z) = (2, 2, 1) và các hoán vị.

Vậy...

17 tháng 12 2020

cho mình hỏi làm thế nào để bạn tìm ra đc cách xét hiệu x4-15x+14

có phưong pháp nào ko

nếu có thì bn giúp mk vs nhé

19 tháng 12 2018

24 tháng 10 2023

 

Với điều kiện x + y + z = 0, ta có thể giả sử x = a, y = -a và z = 0, với -1 ≤ a ≤ 1.

Thay các giá trị vào đa thức, ta có:

x^2 + y^4 + z^4 = a^2 + (-a)^4 + 0^4 = a^2 + a^4.

Để tìm giá trị nhỏ nhất của đa thức này, ta xét đạo hàm của nó theo a:

f'(a) = 2a + 4a^3

Để tìm điểm cực tiểu, ta giải phương trình f'(a) = 0:

2a + 4a^3 = 0 a(1 + 2a^2) = 0

Vì -1 ≤ a ≤ 1, nên ta có hai giá trị a = 0 và a = ±1/√2.

Ta tính giá trị của đa thức tại các điểm cực tiểu:

f(0) = 0^2 + 0^4 = 0

f(1/√2) = (1/√2)^2 + (1/√2)^4 ≈ 0.8536

f(-1/√2) = (-1/√2)^2 + (-1/√2)^4 ≈ 0.8536

Như vậy, giá trị nhỏ nhất của đa thức là khoảng 0.8536, lớn hơn 2. Do đó, ta có thể kết luận rằng đa thức x^2 + y^4 + z^4 có giá trị k lớn hơn 2.