Cho |a−c|<3; |b-c|<2. Chứng minh rằng |a-b|<5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
Đặt \(A=a^3+b^3+c^3-3(a-1)(b-1)(c-1)\)
Biến đổi:
\(A=a^3+b^3+c^3-3[abc-(ab+bc+ac)+a+b+c-1]=a^3+b^3+c^3-3abc+3(ab+bc+ac)-6\)
\(A=(a+b+c)^3-3[(a+b)(b+c)(c+a)+abc]-6+3(ab+bc+ac)\)
\(A=21-3(a+b+c)(ab+bc+ac)+3(ab+bc+ac)=21-6(ab+bc+ac)\)
Áp dụng BĐT Am-Gm:
\(3(ab+bc+ac)\leq (a+b+c)^2=9\Rightarrow ab+bc+ac\leq 3\)
\(\Rightarrow A\geq 21-6.3=3\). Dấu bằng xảy ra khi $a=b=c=1$
Vì \(0\leq a,b,c\leq2\Rightarrow (a-2)(b-2)(c-2)\leq 0\)
\(\Leftrightarrow abc-2(ab+bc+ac)+4\leq 0\Leftrightarrow 2(ab+bc+ac)\geq 4+abc\geq 0\Rightarrow ab+bc+ac\geq 2\)
\(\Rightarrow A\leq 21-6.2=9\). Dấu bằng xảy ra khi $(a,b,c)=(0,1,2)$ và các hoán vị.
Bài 2a)
Ta có
\(A=a^2+b^2+c^2=(a+1)^2+(b+1)^2+(c+1)^2-3-2(a+b+c)\)
\(\Leftrightarrow A=(a+b+c+3)^2-2[(a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)]-3\)
\(\Leftrightarrow A=6-2[(a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)]\)
Vì \(-1\leq a,b,c\leq 2\Rightarrow a+1,b+1,c+1\geq 0\)
\(\Rightarrow (a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)\geq 0\Rightarrow A\leq 6\)
Dấu bằng xảy ra khi \((a,b,c)=(-1,-1,2)\) và các hoán vị của nó
Câu b có lẽ bạn chưa hiểu nhỉ
Câu b: Giải
Ta có vì a<b<c : Nên tổng: abc + acb = 699
=> 100a + 10b + c + 100a + 10c + b = 699
=> a.(100 + 100) + b(10+1) + c(10+1) = 699
=> 200.a + 11.b + 11.c = 699
Mà 11.b và 11.c chia hết cho 11
=> 11.b + 11.c chia hết cho 11
Mà a99 không bao giờ chia hết cho 11
Mà 99 chia hết cho 11
Vậy 11.b + 11.c = 99
=> 11.(b+c) = 99
=> a = (699 - 99) : 200
=> a = 3
=> b + c = 99 : 11 = 9
Mà a < b < c tương đương 3 < b < c , b khác c và cả 2 đều lớn hơn 3
Mà 9 = 0+9 = 1+8=2+7=3+6=4+5
Mà Nếu bằng 0 ; 9 thì 0 nhỏ hơn 3 ; 1;8 thì 1 nhỏ hơn 3 ; 2;7 thì 2 nhỏ hơn 3 ; 3;6 thì 3 = 3 (Nên loại)
Vậy v = 4 ; c = 5
KL: a= 3; b = 4 ; c = 5
Câu b : Gọi a<b<cTa có: abc + acb = 699
=> 100a + 10b + c+10c+b = 200a + 11b+11c = 699
=> Mà 11a và 11c là các số chia hết cho 11
=> 11a + 11c = 99
=> 200a = 600
=> a = 3
Mà: 99 = 44+55 (khác nhau)
Vậy a = 3 ; b = 4 ; c = 5
Câu 1
a,\(a+8⋮a+3\)
có \(a+3⋮a+3\)
mà \(a+8⋮a+3\)
\(\Rightarrow\left(a+8\right)-\left(a+3\right)⋮a+3\)
\(\Rightarrow a+8-a-3⋮a+3\)
\(\Rightarrow5⋮a+3\)
\(\Rightarrow a+3\inƯ\left(5\right)\)
\(\Rightarrow a+3\in\left\{1;5;-1;-5\right\}\)
\(\Rightarrow a\in\left\{-2;2;-4;-8\right\}\)
Còn lại để mình chụp ảnh mình gửi