cho hình vuông ABCD . qua M thuộc đường chéo AC kẻ ME vuông góc với AD ; MF vuông góc với CD . chứng minh :
a/ BE vuông góc với AF
b/ BM vuông góc với EF
c/ BM ; AF ; CE đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: ABCD là hình vuông
nên DB là tia phân giác của \(\widehat{ADC}\)
\(\Leftrightarrow\widehat{ADB}=\widehat{CDB}=45^0\)
hay \(\widehat{FDM}=45^0\)
Xét ΔMFD vuông tại F có \(\widehat{FDM}=45^0\)(cmt)
nên ΔMFD vuông cân tại F
Suy ra: FM=FD(1)
Xét tứ giác AEMF có
\(\widehat{EAF}=90^0\)
\(\widehat{AFM}=90^0\)
\(\widehat{AEM}=90^0\)
Do đó: AEMF là hình chữ nhật
Suy ra: AE=MF(2)
Từ (1) và (2) suy ra AE=DF
Xét ΔAED vuông tại A và ΔDFC vuông tại F có
AE=DF
AD=DC
Do đó: ΔAED=ΔDFC
Suy ra: DE=CF
a, AEMF là hình chữ nhật nên AE=FM
ΔDFM vuông cân tại F suy ra FM=DF
⇒AE=DFsuy ra ΔADE=ΔDCF
⇒DE=CF
b, Tương tự câu a, dễ thấy AF=BE
⇒ΔABF=ΔBCE
⇒ABF^=BCE^ nên BF vuông góc CE
Gọi H là giao điểm của BFvà DE
⇒H là trực tâm của tam giác CEF
Gọi N là giao điểm của BCvà MF
CN=DF=AEvà MN=EM=AF
ΔAEF=ΔCMN
⇒ˆAEF=ˆMCN
⇒CM⊥EF