Tìm n thuộc Z biết A = \(\frac{2n+1}{2n-4}\)để A có giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A nguyên dương
=> n + 1 \(⋮\)2n - 1
Tiếp theo dễ rồi nhé :)
Để \(\frac{4n-1}{2n+3}\)nhận giá trị nguyên thì
\(\Leftrightarrow\)4n-1 chia hết cho 2n+3
Ta có 4n-1=2(n-3)-5 chia hết cho 2n+3
\(\Rightarrow\)2n+3\(\in\)Ư(5)={-1;-5;1;5}
Ta có bảng giá trị
2n+3 | -1 | -5 | 1 | 5 |
2n | -2 | -4 | -1 | 1 |
Vậy n={-2;-4;-1;1} thì \(\frac{4n-1}{2n+3}\)là số nguyên
a)\(A=\frac{2n-5}{n+3}=\frac{2n+6-11}{n+3}=\frac{2n+6}{n+3}-\frac{11}{n+3}=2-\frac{11}{n+3}\)
\(2\in Z\Rightarrow\)Để \(A=2-\frac{11}{n+3}\in Z\)thì \(\frac{11}{n+3}\in Z\Rightarrow n+3\inƯ\left(11\right)\)
\(Ư\left(11\right)=\left(\pm1;\pm11\right)\Rightarrow n+3=\left(\pm1;\pm11\right)\)
*\(n+3=1\Rightarrow n=-2\)
*\(n+3=-1\Rightarrow n=-4\)
*\(n+3=11\Rightarrow n=8\)
*\(n+3=-11\Rightarrow n=-14\)
bạn ấn vào đúng 0 sẽ ra kết quả, mình giải được rồi dễ lắm
a: Để A là phân số thì \(2n+4\ne0\)
=>\(2n\ne-4\)
=>\(n\ne-2\)
b: Thay n=0 vào A, ta được:
\(A=\dfrac{3\cdot0-2}{2\cdot0+4}=\dfrac{-2}{4}=-\dfrac{1}{2}\)
Thay n=-1 vào A, ta được:
\(A=\dfrac{3\cdot\left(-1\right)-2}{2\cdot\left(-1\right)+4}=\dfrac{-5}{-2+4}=\dfrac{-5}{2}\)
Thay n=2 vào A, ta được:
\(A=\dfrac{3\cdot2-2}{2\cdot2+4}=\dfrac{4}{8}=\dfrac{1}{2}\)
c: Để A nguyên thì \(3n-2⋮2n+4\)
=>\(6n-4⋮2n+4\)
=>\(6n+12-16⋮2n+4\)
=>\(-16⋮2n+4\)
=>\(2n+4\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
=>\(2n\in\left\{-3;-5;-2;-6;0;-8;4;-12;12;-20\right\}\)
=>\(n\in\left\{-\dfrac{3}{2};-\dfrac{5}{2};-1;-3;0;-4;2;-6;6;-10\right\}\)
Đề A đạt giá trị nguyên
=> 3n + 9 chia hết cho n - 4
3n - 12 + 12 + 9 chia hết cho n - 4
3.(n - 4) + 2c1 chia hết cho n - 4
=> 21 chia hết cho n - 4
=> n - 4 thuộc Ư(21) = {1 ; -1 ; 3 ; -3 ; 7 ; -7 ; 21 ; -21}
Thay n - 4 vào các giá trị trên như
n - 4 = 1
n - 4 = -1
.......
Ta tìm được các giá trị :
n = {5 ; 3 ; 7 ; -1 ; 11 ; -3 ; 25 ; -17}
a) Để A thuộc Z (A nguyên)
=> 3n+9 chia hết cho n-4
hay 3n+9-12+12 chia hết cho n-4 (-12+12=0)
3n-12+9+12 chia hết cho n-4
3n-12+21 chia hết cho n-4
3(n-4)+21 chia hết cho n-4
Vì 3(n-4) luôn chia hết cho n-4 với mọi n thuộc Z=> 21 chia hết cho n-4
mà Ư(21)={21;1;7;3} nên ta có bảng:
n-4 | 21 | 1 | 3 | 7 |
n | 25 (tm) | 5 (tm) | 7 (tm) | 11 (tm) |
Vậy n={25;5;7;11} thì A nguyên.
b)
Để B thuộc Z (B nguyên)
=> 6n+5 chia hết cho 2n-1
hay 6n+5-3+3 chia hết cho 2n-1 (-3+3=0)
6n-3+5+3 chia hết cho 2n-1
6n-3+8 chia hết cho 2n-1
3(2n-1)+8 chia hết cho 2n-1
Vì 3(2n-1) luôn chia hết cho 2n-1 với mọi n thuộc Z=> 8 chia hết cho 2n-1
mà Ư(8)={8;1;2;4} nên ta có bảng:
2n-1 | 8 | 1 | 2 | 4 |
n | 4.5 (ktm) | 1 (tm) | 1.5 (ktm) | 2.5 (ktm) |
Vậy, n=1 thì B nguyên.
a) Ta có: \(A=\frac{2n+1}{2n-1}=\frac{2n-1+2}{2n-1}=\frac{2n-1}{2n-1}+\frac{2}{2n-1}=1+\frac{2}{2n-1}\)
Để A là một phân số \(\Leftrightarrow2n-1\ne0\Leftrightarrow x\ne\frac{1}{2}\)
b) Để A nhận giá trị nguyên \(\Leftrightarrow2⋮\left(2n-1\right)\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Nếu 2n - 1 = 1 => n = 1
Nếu 2n - 1 = -1 => n = 0
Nếu 2n - 1= 2 => n = 3/2
Nếu 2n - 1 = -2 => n = -1/2
Vì \(n\in Z\Rightarrow n=\left\{0;1\right\}\) thì A đạt giá trị nguyên
\(\text{a) }ĐKXĐ:2n-1\ne0\Leftrightarrow n\ne\frac{1}{2}\)
Phản chứng:
\(A=\frac{2n+1}{2n-1}=1+\frac{2}{2n-1}\)(Vậy chúng ta phải chứng minh A là số nguyên)
Để A thuộc Z => \(\frac{2}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\mp2\right\}\)
+ Với 2n-1 =1 => n=1 => A= 3 ( nên a) ko đúng
b)từ ý a) ta có:
Để A thuộc Z => \(\frac{2}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\mp2\right\}\)
+ Với 2n-1=-2=> n= -1/2( loại)
+Với 2n-1=-1 => n= 0 ( chọn)
+ Với 2n-1=1=> n= 1 ( chọn)
+ Với 2n-1 =2 => n=3/2( loại)
vậy......
* Để \(A=\frac{2n+1}{2n-4}\in Z\) thì \(2n+1\)phải chia hết cho \(2n-4\)
Vì \(2n+1\)chia hết cho \(2n-4\)
\(\Rightarrow2n+1-\left(2n-4\right)\)chia hết cho \(2n-4\)
\(\Rightarrow5\)chia hết cho \(2n-4\)
\(\Rightarrow2n-4\inƯ\left(5\right)\)
\(\Rightarrow2n-4\in\left\{-5;-1;1;5\right\}\)
\(\left(1\right)2n-4=-5\Rightarrow2n=-1\Rightarrow n\notin Z\left(loại\right)\)
\(\left(2\right)2n-4=-1\Rightarrow2n=3\Rightarrow n\notin Z\left(loại\right)\)
\(\left(3\right)2n-4=1\Rightarrow2n=5\Rightarrow n\notin Z\left(loại\right)\)
\(\left(4\right)2n-4=5\Rightarrow2n=9\Rightarrow n\notin Z\left(loại\right)\)
Vậy \(n\in rỗng\)
A có giá trị nguyên thì 2n+1 chia hết cho 2n-4
2n+1-(2n-4)=5 chia hết cho 2n-4
Ta có bảng sau