cho P= x - \(\sqrt{x}\)+2
a) so sánh P với 1/2
b) tìm x sao cho P> 3
c) GTNN của p
(giúp mình nhé)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(x>0\)
\(A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1\)
\(=x+\sqrt{x}-2\sqrt{x}-1+1=x-\sqrt{x}\)
\(A=x-\sqrt{x}=2\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)(do \(\sqrt{x}+1\ge1>0\))
b) \(A=x-\sqrt{x}=\sqrt{x}\left(\sqrt{x}-1\right)>0\)(do \(x>1\))
\(\Leftrightarrow A=x-\sqrt{x}=\left|A\right|\)
c) \(A=x-\sqrt{x}=\left(x-\sqrt{x}+\dfrac{1}{4}\right)-\dfrac{1}{4}\)
\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
\(minA=-\dfrac{1}{4}\Leftrightarrow\sqrt[]{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\left(tm\right)\)
\(a,A=\dfrac{x\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1\left(x>0\right)\\ A=\dfrac{x\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-2\sqrt{x}-1+1\\ A=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\\ A=2\Leftrightarrow x-\sqrt{x}-2=0\\ \Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow\sqrt{x}=2\left(\sqrt{x}>0\right)\\ \Leftrightarrow x=4\left(tm\right)\)
\(b,x>1\Leftrightarrow\sqrt{x}-1>0\\ \Leftrightarrow\left|A\right|=\left|x-\sqrt{x}\right|=\left|\sqrt{x}\left(\sqrt{x}-1\right)\right|=\sqrt{x}\left(\sqrt{x}-1\right)=A\left(\sqrt{x}>0\right)\)
\(c,A=x-\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\\ A_{min}=-\dfrac{1}{4}\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\left(tm\right)\)
1/x+1/y=1/2 <=> (x+y)/xy=1/2 <=>[(\(\sqrt{x}+\sqrt{y}\))2-2\(\sqrt{xy}\)]/xy=1/2 <=>(\(\sqrt{x}+\sqrt{y}\))2=xy/2+2\(\sqrt{xy}\)=A2
1/2=1/x+1/y\(\ge\)2/\(\sqrt{xy}\)(bdt cosi cho 1/x và 1/y) <=>1/2 \(\ge\frac{2}{\sqrt{xy}}\)<=> \(\sqrt{xy}\ge\)4
Vậy A2\(\ge\)42/2+2.4=16 <=> A\(\ge\)4( vì A >0)
Dấu = xảy ra khi 1/x=1/y và \(\sqrt{xy}=4\)=> x=y=4
\(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}=\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2\ge\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)^2\)
=> \(\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)^2\le1\)
=> \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\le1\)
=> \(1\ge\frac{1^2}{\sqrt{x}}+\frac{1^2}{\sqrt{y}}\ge\frac{\left(1+1\right)^2}{\sqrt{x}+\sqrt{y}}=\frac{4}{\sqrt{x}+\sqrt{y}}\)
=> \(\sqrt{x}+\sqrt{y}\ge4\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}\frac{1}{\sqrt{x}}=\frac{1}{\sqrt{y}}\\\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\end{cases}}\Leftrightarrow x=y=4\)
Vậy min A = 4 đạt tại x = y= 4.
ĐKXĐ: x>=0
a: P=1/2
=>\(\dfrac{\sqrt{x}+2}{\sqrt{x}+5}=\dfrac{1}{2}\)
=>\(2\sqrt{x}+4=\sqrt{x}+5\)
=>\(\sqrt{x}=1\)
=>x=1(nhận)
b: \(P^2-P=P\left(P-1\right)\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+5}\cdot\dfrac{\sqrt{x}+2-\sqrt{x}-5}{\sqrt{x}+5}\)
\(=\dfrac{-3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+5\right)^2}< 0\)
=>\(P^2< P\)
c: Để P nguyên thì \(\sqrt{x}+2⋮\sqrt{x}+5\)
=>\(\sqrt{x}+5-3⋮\sqrt{x}+5\)
=>\(\sqrt{x}+5\inƯ\left(-3\right)\)
=>\(\sqrt{x}+5\in\left\{1;-1;3;-3\right\}\)
=>\(\sqrt{x}\in\left\{-4;-6;-2;-8\right\}\)
=>\(x\in\varnothing\)
a: \(M-\dfrac{3}{2}=\dfrac{x+7}{\sqrt{x}+3}-\dfrac{3}{2}\)
\(=\dfrac{2x+14-3\sqrt{x}-9}{2\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2x-3\sqrt{x}+5}{2\left(\sqrt{x}+3\right)}>0\)
=>M>3/2
b: \(M=\dfrac{x-9+16}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}\)
\(=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\cdot\sqrt{\dfrac{16}{\sqrt{x}+3}\cdot\left(\sqrt{x}+3\right)}-6=2\cdot4-6=2\)
Dấu = xảy ra khi (căn x+3)^2=16
=>căn x+3=4
=>x=1
1) Áp dụng BĐT bunhia, ta có
\(P^2\le3\left(6a+6b+6c\right)=18\Rightarrow P\le3\sqrt{2}\)
Dấu = xảy ra <=> a=b=c=1/3
đặt \(\sqrt{x}\)= t ta có;
P = t2 -t +2 = (t -1/2)2 +2-1/4
a) vậy P >= 3/4 >1/2
b) thay P>3 vào rồi tìm x
c) GTNN P= 3/4 ( xem a sẽ rõ)