Từ điểm S ngoài đường tròn (O) vẽ 2 tiếp tuyến SA,SB .SO cắt ab tại H
A) C?M SAOB nội tiếp và suy ra SA2=SH.SO
B) vẽ các tuyến SCD đến (O). C/M SA2=SC.SD và tứ giác CHOD nội tiếp
C) tiếp tuyến C và D của (O) cắt nhau tại k.C/m 3 điểm K,A,B thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)
nên MAOB là tứ giác nội tiếp
Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
mà OA=OB
nên OM là đường trung trực của AB
=>OM⊥AB
b: Xét ΔMAC và ΔMDA có
\(\widehat{MAC}=\widehat{MDA}\)
\(\widehat{AMC}\) chung
Do đó: ΔMAC∼ΔMDA
SUy ra: MA/MD=MC/MA
hay \(MA^2=MC\cdot MD\left(1\right)\)
Xét ΔOAM vuông tại A có AH là đường cao
nên \(MH\cdot MO=MA^2\left(2\right)\)
Từ (1) và (2) suy ra \(MC\cdot MD=MH\cdot MO\)
a: góc SAO+góc SBO=180 độ
=>SAOB nội tiếp
c: Xét ΔSAD và ΔSCA có
góc SAD=góc SCA
góc ASD chung
=>ΔSAD đồng dạng vớiΔSCA
a) Xét tứ giác SAOB có
\(\widehat{OAS}+\widehat{OBS}=180^0\)
nên SAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Xét ΔSAC và ΔSDA có
\(\widehat{SAC}=\widehat{SDA}\left(=\dfrac{1}{2}sđ\stackrel\frown{AC}\right)\)
\(\widehat{ASC}\) chung
Do đó: ΔSAC\(\sim\)ΔSDA(g-g)
Suy ra: \(\dfrac{SA}{SD}=\dfrac{SC}{SA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(SA^2=SC\cdot SD\)
Em kiểm tra lại đề câu d, điểm A đã cố định nên đề ko thể là xác định vị trí A được, chỉ có xác định vị trí d qua O sao cho diện tích tam giác kia min thôi
a: góc OBA+góc OCA=180 độ
=>OBAC nội tiếp đường tròn đường kính OA(1)
ΔOMN cân tại O
mà OH là trung tuyến
nên OH vuông góc MN
=>OH vuông góc HA
=>H nằm trên đường tròn đường kính OA(2)
Từ (1), (2) suy ra O,H,B,A,C cùng nằm trên đường tròn đường kính AO
b: Xét ΔABM và ΔANB có
góc ABM=góc ANB
góc BAM chung
=>ΔABM đồng dạng với ΔANB
=>AB/AN=AM/AB
=>AB^2=AN*AM
Xét ΔKCO vuông tại C và ΔKHA vuông tại H có
góc K chung
=>ΔKCO đồng dạng với ΔKHA
=>KC/KH=KO/KA
=>KC*KA=KO*KH
c: góc ABE+góc OBE=90 độ
góc CBE+góc OEB=90 độ
mà góc OBE=góc OEB
nên góc ABE=góc CBE
=>BE là phân giác của góc ABC
mà AE là phan giác góc BAC
nên E cách đều AB,BC,AC
Bài 1 :
a.Ta có MC là tiếp tuyến của (O)
\(\Rightarrow MC\perp OC\)
Mà \(MK\perp KD\Rightarrow\widehat{MCO}=\widehat{MKD}=90^0\Rightarrow OCDK\) nội tiếp
b.Vì MC là tiếp tuyến của (O)
\(\Rightarrow\widehat{MCA}=\widehat{MBC}\Rightarrow\Delta MCA~\Delta MBC\left(g.g\right)\)
\(\Rightarrow\frac{MC}{MB}=\frac{MA}{MC}\Rightarrow MC^2=MA.MB\)
c . Vì MO∩(O)=AB \(\Rightarrow AB\) là đường kính của (O)
\(\Rightarrow AC\perp BC\Rightarrow\widehat{BCD}+\widehat{MCA}=90^0\Rightarrow\widehat{BCD}=90^0-\widehat{MCA}\)
Mà \(\widehat{MCA}=\widehat{MBC}\Rightarrow\widehat{MCD}=90^0-\widehat{ABN}=\widehat{BNK}=\widehat{CND}\)
\(\Rightarrow\Delta DCN\) cân
d ) Ta có : \(\widehat{BFD}=90^0=\widehat{BKD}\) vì AB là đường kính của (O)
\(\Rightarrow BKFD\) nội tiếp
\(\Rightarrow\widehat{FDK}=\widehat{KBF}=\widehat{ABC}+\widehat{CBF}=\widehat{MCA}+\widehat{FCD}=\widehat{DCE}\)
\(+\widehat{FCD}=\widehat{FCE}\)
Vì MC là tiếp tuyến của (O)
\(\Rightarrow CEDF\) nội tiếp
a: Xét tứ giác SAOB có \(\widehat{SAO}+\widehat{SBO}=180^0\)
nên SAOB là tứ giác nội tiếp
Xét (O) có
SA là tiếp tuyến
SB là tiếp tuyến
Do đó: SA=SB
mà OA=OB
nên OS là đường trung trực của AB
hay OS\(\perp\)AB
b: Xét ΔSAC và ΔSDA có
\(\widehat{SAC}=\widehat{SDA}\)
\(\widehat{DSA}\) chung
Do đó: ΔSAC\(\sim\)ΔSDA
Suy ra: SA/SD=SC/SA
hay \(SA^2=SD\cdot SC\)