K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác SAOB có \(\widehat{SAO}+\widehat{SBO}=180^0\)

nên SAOB là tứ giác nội tiếp

Xét (O) có

SA là tiếp tuyến

SB là tiếp tuyến

Do đó: SA=SB

mà OA=OB

nên OS là đường trung trực của AB

hay OS\(\perp\)AB

b: Xét ΔSAC và ΔSDA có 

\(\widehat{SAC}=\widehat{SDA}\)

\(\widehat{DSA}\) chung

Do đó: ΔSAC\(\sim\)ΔSDA

Suy ra: SA/SD=SC/SA

hay \(SA^2=SD\cdot SC\)

a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)

nên MAOB là tứ giác nội tiếp

Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

mà OA=OB

nên OM là đường trung trực của AB

=>OM⊥AB

b: Xét ΔMAC và ΔMDA có 

\(\widehat{MAC}=\widehat{MDA}\)

\(\widehat{AMC}\) chung

Do đó: ΔMAC∼ΔMDA
SUy ra: MA/MD=MC/MA

hay \(MA^2=MC\cdot MD\left(1\right)\)

Xét ΔOAM vuông tại A có AH là đường cao

nên \(MH\cdot MO=MA^2\left(2\right)\)

Từ (1) và (2) suy ra \(MC\cdot MD=MH\cdot MO\)

a: góc SAO+góc SBO=180 độ

=>SAOB nội tiếp

c: Xét ΔSAD và ΔSCA có

góc SAD=góc SCA

góc ASD chung

=>ΔSAD đồng dạng vớiΔSCA

a) Xét tứ giác SAOB có 

\(\widehat{OAS}+\widehat{OBS}=180^0\)

nên SAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét ΔSAC và ΔSDA có 

\(\widehat{SAC}=\widehat{SDA}\left(=\dfrac{1}{2}sđ\stackrel\frown{AC}\right)\)

\(\widehat{ASC}\) chung

Do đó: ΔSAC\(\sim\)ΔSDA(g-g)

Suy ra: \(\dfrac{SA}{SD}=\dfrac{SC}{SA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(SA^2=SC\cdot SD\)

NV
21 tháng 4 2023

Em kiểm tra lại đề câu d, điểm A đã cố định nên đề ko thể là xác định vị trí A được, chỉ có xác định vị trí d qua O sao cho diện tích tam giác kia min thôi

a: góc OBA+góc OCA=180 độ

=>OBAC nội tiếp đường tròn đường kính OA(1)

ΔOMN cân tại O

mà OH là trung tuyến

nên OH vuông góc MN

=>OH vuông góc HA

=>H nằm trên đường tròn đường kính OA(2)

Từ (1), (2) suy ra O,H,B,A,C cùng nằm trên đường tròn đường kính AO

b: Xét ΔABM và ΔANB có

góc ABM=góc ANB

góc BAM chung

=>ΔABM đồng dạng với ΔANB

=>AB/AN=AM/AB

=>AB^2=AN*AM

Xét ΔKCO vuông tại C và ΔKHA vuông tại H có

góc K chung

=>ΔKCO đồng dạng với ΔKHA

=>KC/KH=KO/KA

=>KC*KA=KO*KH

c: góc ABE+góc OBE=90 độ

góc CBE+góc OEB=90 độ

mà góc OBE=góc OEB

nên góc ABE=góc CBE

=>BE là phân giác của góc ABC

mà AE là phan giác góc BAC

nên E cách đều AB,BC,AC

1 . Cho M nằm ngoài (O;R). Tia MO cắt (O) lần lượt tại A và B. Gọi K là điểm nằm giữa O và B. Vẽ đường thẳng d AB tại K. Tiếp tuyến MC với (O) cắt d tại D (C là tiếp điểm), BC cắt d tại N.a) Chứng minh: CDKO nội tiếp.b) Chứng minh MC2 =MA. MB.c) Chứng minh: DCN cân.d) Gọi F là giao điểm của AD và (O), E là giao điểm của AC và d. Chứng minh: D, E, C, F cùng nằm trên một đường tròn. 2 . co đường...
Đọc tiếp

1 . Cho M nằm ngoài (O;R). Tia MO cắt (O) lần lượt tại A và B. Gọi K là điểm nằm giữa O và B. Vẽ đường thẳng d AB tại K. Tiếp tuyến MC với (O) cắt d tại D (C là tiếp điểm), BC cắt d tại N.

a) Chứng minh: CDKO nội tiếp.

b) Chứng minh MC2 =MA. MB.

c) Chứng minh: DCN cân.

d) Gọi F là giao điểm của AD và (O), E là giao điểm của AC và d. Chứng minh: D, E, C, F cùng nằm trên một đường tròn. 

2 . 

co đường tròn (O;R) và điểm S sao cho SO=2R . vẽ các tiếp tuyến SA, SB của đường tròn (O;R) (A,B là các tiếp điểm ) , và cát tuyến SMN ( không qua O) . gọi I là trung điểm của MN.

a/ chứng minh 5 điểm S,A,O,I,B cùng thuộc moottj đường tròn

b/ chứng minh SA2 = SM.SN

c/ tính SM và SN theo R khi MN= SA

d/ kẻ MH⊥OA , MH cát AN, AB tại D và E . chứng minh tứ giác IEMB nội tiếp đường tròn

e/ tính chu vi và diện tích hnhf phẳng giới hạn bởi SA, SB và cung AB

 

1
21 tháng 4 2020

Bài 1 : 

M A C D E F N K O B

a.Ta có MC là tiếp tuyến của (O)

\(\Rightarrow MC\perp OC\)

Mà \(MK\perp KD\Rightarrow\widehat{MCO}=\widehat{MKD}=90^0\Rightarrow OCDK\) nội tiếp 

b.Vì MC là tiếp tuyến của (O) 

\(\Rightarrow\widehat{MCA}=\widehat{MBC}\Rightarrow\Delta MCA~\Delta MBC\left(g.g\right)\)

\(\Rightarrow\frac{MC}{MB}=\frac{MA}{MC}\Rightarrow MC^2=MA.MB\)

c . Vì MO∩(O)=AB \(\Rightarrow AB\) là đường kính của (O)

\(\Rightarrow AC\perp BC\Rightarrow\widehat{BCD}+\widehat{MCA}=90^0\Rightarrow\widehat{BCD}=90^0-\widehat{MCA}\)

Mà \(\widehat{MCA}=\widehat{MBC}\Rightarrow\widehat{MCD}=90^0-\widehat{ABN}=\widehat{BNK}=\widehat{CND}\)

\(\Rightarrow\Delta DCN\) cân 

d ) Ta có : \(\widehat{BFD}=90^0=\widehat{BKD}\) vì AB là đường kính của (O)

\(\Rightarrow BKFD\) nội tiếp 

\(\Rightarrow\widehat{FDK}=\widehat{KBF}=\widehat{ABC}+\widehat{CBF}=\widehat{MCA}+\widehat{FCD}=\widehat{DCE}\)

\(+\widehat{FCD}=\widehat{FCE}\)

Vì MC là tiếp tuyến của (O)

\(\Rightarrow CEDF\) nội tiếp 

15 tháng 3 2023

giúp em đi ạ