Tìm x, y biết:
b) 7x = 9y và 10x - 8y = 68
c) \(\left(x-\frac{1}{2}\right)^{50}\)+ \(\left(y+\frac{1}{3}\right)^{40}\)= 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\frac{x}{18}\)=\(\frac{y}{15}\)=\(\frac{x-y}{18-15}\)=\(\frac{_{-30}}{3}\)=-10
x=-10.18=-180
y=-10.15=-150
a, tự làm
b, Theo bài ra ta có : \(7x=9y\Leftrightarrow\frac{x}{9}=\frac{y}{7}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{9}=\frac{y}{7}=\frac{10x-8y}{10.9-8.7}=\frac{68}{34}=2\)
\(x=18;y=14\)
c, \(\left(x-\frac{1}{2}\right)^{50}+\left(y+\frac{1}{3}\right)^{40}=0\)
Ta có : \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^{50}\ge0\forall x\\\left(y+\frac{1}{3}\right)^{40}\ge0\forall y\end{cases}}\Leftrightarrow\left(x-\frac{1}{2}\right)^{50}+\left(y+\frac{1}{3}\right)^{40}\ge0\forall x;y\)
Dấu ''='' xảy ra <=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{1}{3}\end{cases}}\)
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{18}=\frac{y}{15}=\frac{x-y}{18-15}=\frac{-30}{3}=-10\)
=> x = -10.18 = -180 ; y = -10.15 = -150
b) Ta có : \(7x=9y\Rightarrow\frac{7x}{63}=\frac{9y}{63}\Rightarrow\frac{x}{9}=\frac{y}{7}\)
=> \(\frac{10x}{90}=\frac{8y}{56}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{10x}{90}=\frac{8y}{56}=\frac{10x-8y}{90-56}=\frac{68}{34}=2\)
=> x = 18,y = 14
c) Vì \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^{50}\ge0\forall x\\\left(y+\frac{1}{3}\right)^{40}\ge0\forall y\end{cases}}\)
=> \(\left(x-\frac{1}{2}\right)^{50}+\left(y+\frac{1}{3}\right)^{40}\ge0\forall x,y\)
Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}x-\frac{1}{2}=0\\y+\frac{1}{3}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{1}{3}\end{cases}}\)
Vậy:....
Ta có : \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^{50}\ge0\forall x\\\left(y+\frac{1}{3}\right)^{40}\ge0\forall y\end{cases}}\Rightarrow\left(x-\frac{1}{2}\right)^{50}+\left(y+\frac{1}{3}\right)^{40}\ge0\forall x;y\)
Khi đó \(\left(x-\frac{1}{2}\right)^{50}+\left(y+\frac{1}{3}\right)^{40}=0\)
<=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y+\frac{1}{3}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{1}{3}\end{cases}}\)
Vậy x = 1/2 ; y = -1/3
Ta có: \(\left(x-\frac{1}{2}\right)^{50}+\left(y+\frac{1}{3}\right)^{40}\ge0\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^{50}=0\\\left(y+\frac{1}{3}\right)^{40}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{1}{3}\end{cases}}\)
b) \(7x=9y\) và \(10x-8y=68\)
Có: \(7x=9y\Leftrightarrow\frac{x}{9}=\frac{y}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{9}=\frac{y}{7}=\frac{10x-8y}{90-56}=\frac{68}{34}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.9\\y=2.7\end{cases}}\Rightarrow\hept{\begin{cases}x=18\\y=14\end{cases}}\)
b) Ta có: 7x = 9y => x = 9/7y
Lại có: 10x - 8y = 68
=> 10.9/7.y - 8y = 68
=> 90/7.y - 56/7.y = 68
=> 34/7.y = 68
=> y = 68 : 34/7 = 14
=> x = 9/7.14 = 18
c) Vì (x - 1/2)50 > hoặc = 0; (y + 1/3)40 > hoặc = 0
Mà (x - 1/2)50 + (y + 1/3)40 = 0
=> (x - 1/2)50 = 0; (y + 1/3)40 = 0
=> x - 1/2 = 0; y + 1/3 = 0
=> x = 1/2; y = -1/3