K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2022

a) Xét ΔABD vàΔ HAD có:

     \(\widehat{DAB}\) =\(\widehat{AHB}\)= 90o( gt)

         \(\widehat{D}\) chung

⇒Δ ABD ∼ ΔHAD(g-g)

b) Áp dụng định lí Py-ta-go vào Δ ABD vuông tại A ta có:

   BD=\(\sqrt{AD^2+AB^2}\)=\(\sqrt{3^2+4^2}\)=\(\sqrt{25}\)=5(cm)

Theo câu a ta có:Δ ABD ∼ ΔHAD

\(\dfrac{BD}{AD}\)=\(\dfrac{AD}{HD}\)hay \(\dfrac{5}{3}\)=\(\dfrac{3}{HD}\)⇒HD=\(\dfrac{3.3}{5}\)=1,8 (cm)

 

 

a: Xét ΔABD vuông tại A và ΔHAD vuông tại H có

góc ADH chung

Do đó: ΔABD\(\sim\)ΔHAD

b: \(BD=\sqrt{3^2+4^2}=5\left(cm\right)\)

\(HD=\dfrac{AD^2}{BD}=1.8\left(cm\right)\)

2 tháng 8 2021

a, Xét tam giác AHB và tam giác BCD, có:

AHB = BCD = 90o

B1 = B2

=> Tam giác AHB ~ tam giác BCD (g_g)

b, Theo ý a, ta có:

Tam giác AHB ~ tam giác BCD => AH/BC = AB/BD

=> AH = AB.BC/BD = 12.9/15 = 7,2 cm

=> AH = 7,2 cm

c, Vì BD là đường chéo hình chữ nhật ABCD nên B1 = B2 = D1 = D2

Xét tam giác AHB và tam giác DHA, có

AHB = DHA = 90o

D1 = B1 (cmt)

=> Tam giác AHB ~ tam giác DHA (g_g)

=> AH/BH = DH/AH (dpcm)

a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có

góc HBA chung

Do đó: ΔABD\(\sim\)ΔHBA

b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

\(HB=\dfrac{AB^2}{BD}=6.4\left(cm\right)\)

a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có

góc HBA chung

Do đó: ΔABD\(\sim\)ΔHBA

b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

\(HB=\dfrac{AB^2}{BD}=6.4\left(cm\right)\)

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

góc ABH=góc BDC

=>ΔAHB đồng dạng với ΔBCD

b: BD=căn 9^2+12^2=15cm

AH=9*12/15=108/15=7,2cm
c: Xét ΔHAD có HN/HA=HP/HD

nên NP//AD và NP=AD/2

=>NP//BC và NP=BC/2

=>NP//BM và NP=BM

=>BNPM là hình bình hành

a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có

góc ABD chung

=>ΔABD đồng dạng với ΔHBA

b: BD=căn 3^2+4^2=5cm

HB=AB^2/BD=3,2cm

c: AD là phân giác

=>ED/EB=AD/AB

mà AD/AB=AH/BH

nên ED/EB=AH/BH

a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có

góc HDA chung

=>ΔHAD đồng dạng với ΔABD

b: ΔABD vuông tại A có AH là đường cao

nên DA^2=DH*DB

c: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

DH=6^2/10=3,6cm