Đề thi đại học sư phạm năm 2004
Tìm m để hệ pt sau có nghiệm thực :
\(\hept{\begin{cases}x+\frac{1}{x}+y+\frac{1}{y}=5\\x^3+\frac{1}{x^3}+y^3+\frac{1}{y^3}=15m-10\end{cases}}\)
Sử dụng hệ phương trình đối xứng loại I nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện xác định x#1; y#3.Đặt: \(\hept{\begin{cases}\frac{1}{x-1}=a\\\frac{1}{y-3}=b\end{cases}}\Rightarrow\hept{\begin{cases}5a+b=10\\a-3b=18\end{cases}}\Rightarrow\hept{\begin{cases}15a+3b=30\\a-3b=18\end{cases}}\)
Cộng theo vế: \(15a+3b+a-3b=48\Rightarrow16a=48\Rightarrow a=3\Rightarrow b=-5\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{x-1}=3\Rightarrow x=\frac{4}{3}\\\frac{1}{y-3}=-5\Rightarrow y=-\frac{14}{5}\end{cases}}\)
\(\hept{\begin{cases}\frac{5}{x-1}+\frac{1}{y-3}=10\\\frac{1}{x-1}-\frac{3}{y-3}=18\end{cases}}\)
Đặt: \(\frac{1}{x-1}=a\left(a>0\right);\frac{1}{y-3}=b\left(b>0\right)\)
Khi đó hpt có dạng:
\(\hept{\begin{cases}5a+b=10\\a-3b=18\end{cases}\Rightarrow\hept{\begin{cases}a=3\\b=-5\end{cases}}\left(Tm\right)}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{x-1}=3\\\frac{1}{y-3}=-5\end{cases}}\Rightarrow\hept{\begin{cases}3\left(x-1\right)=1\\-5\left(y-3\right)=1\end{cases}}\Rightarrow\hept{\begin{cases}3x-3=1\\-5y+15=1\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{14}{5}\end{cases}}\)
\(b,\hept{\begin{cases}4\left(x+y\right)=5\left(x-y\right)\\\frac{40}{x+y}+\frac{40}{x-y}=9\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4\left(x+y\right)^2\left(x-y\right)-5\left(x-y\right)^2\left(x+y\right)=0\\40\left(x-y\right)+40\left(x+y\right)-9\left(x-y\right)\left(x+y\right)=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x^2-y^2\right)\left[4\left(x+y\right)-5\left(x-y\right)\right]=0\\80x-9\left(x^2-y^2\right)=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x+y\right)\left(x-y\right)\left(9y-x\right)=0\\9\left(\frac{80}{9}x-x^2+y^2\right)=0\end{cases}}\)
\(\Rightarrow.......\)
a.\(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{5}{8}\\2\cdot\frac{5}{8}+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)
a) \(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\Rightarrow\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\\frac{5}{4}+4y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)
vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{5}{8};\frac{7}{16}\right)\)
b) \(\hept{\begin{cases}4x-3y=1\\-x+2y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}8x-6y=2\\-3x+6y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5x=5\\-3x+6y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\-3+6y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(1;1\right)\)
Đặt \(x+1=u;y-2=v\)
Hệ trở thành \(\hept{\begin{cases}\frac{2}{u}+\frac{1}{v}=\frac{1}{3}\\\frac{3}{u}+\frac{2}{v}=\frac{1}{5}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{4}{u}+\frac{2}{v}=\frac{2}{3}\left(1\right)\\\frac{3}{u}+\frac{2}{v}=\frac{1}{5}\left(2\right)\end{cases}}\)
Lấy (1) - (2), ta được\(\frac{1}{u}=\frac{7}{15}\Leftrightarrow u=\frac{15}{7}\)
\(\Rightarrow x=\frac{15}{7}-1=\frac{8}{7}\)
Từ đó tính được \(y=\frac{1}{3}\)
Vậy hệ có 1 nghiệm \(\left(\frac{8}{7};\frac{1}{3}\right)\)
<=> \(\hept{\begin{cases}\frac{4}{x+1}+\frac{2}{y-2}=\frac{2}{3}\\\frac{3}{x+1}+\frac{2}{y-2}=\frac{1}{5}\end{cases}}\)
<=> \(\hept{\begin{cases}\frac{1}{x+1}=\frac{7}{15}\\\frac{3}{x+1}+\frac{2}{y-2}=\frac{1}{5}\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{8}{7}\\y=\frac{7}{5}\end{cases}}\)
\(\hept{\begin{cases}x=\frac{m+1}{3}y-1\\-mx=y-1\end{cases}\Rightarrow\hept{\begin{cases}x-\frac{m+1}{3}y=-1\\mx+y=1\end{cases}}}\)
Để hpt có nghiệm => hpt có 1 nghiệm duy nhất hoặc có vô số nghiệm
* Để hpt có 1 nghiệm duy nhất
\(\Rightarrow\frac{1}{m}\ne\frac{m+1}{1}\Rightarrow m\ne m+1\left(tm\right)\)
Vậy với mọi m phương trình luôn có 1 nghiệm duy nhất
* Để hpt có vô số nghiệm
\(\Rightarrow\frac{1}{m}=\frac{m\left(m+1\right)}{1}=-\frac{1}{1}\)
\(\frac{1}{m}=-1\Rightarrow m=-1\)\(\Rightarrow-\frac{1\left(-1+1\right)}{1}=-1\left(ktm\right)\)
Vậy không có giá trị nào để hpt vô số nghiệm
Vậy với mọi m pt luôn có nghiệm
\(\hept{\begin{cases}\frac{2}{x+y}+\frac{1}{x-y}=3\\\frac{1}{x+y}-\frac{3}{x-y}=1\end{cases}}\)
Đặt: \(u=\frac{1}{x+y};v=\frac{1}{x-y}\). Ta có:
\(\hept{\begin{cases}2u+v=3\\u-3v=1\end{cases}}\)
\(\hept{\begin{cases}2u+v=3\\2u-6v=2\end{cases}}\)<=> 7v=1 => \(v=\frac{1}{7};u=\frac{10}{7}\)
\(< =>\hept{\begin{cases}\frac{1}{x+y}=\frac{10}{7}\\\frac{1}{x-y}=\frac{1}{7}\end{cases}}\) <=> \(\hept{\begin{cases}10x+10y=7\\x-y=7\end{cases}}\)<=> 10(y+7)+10y=7
<=> 20y+70=7
=> \(y=-\frac{63}{20}\); \(x=\frac{77}{20}\)
a = \(\frac{1}{x+y}\)
b = \(\frac{1}{x-y}\)
=>
\(\hept{\begin{cases}2a+b=3\\a-3b=1\end{cases}}\)
<=>
\(\hept{\begin{cases}2a+b=3\\2a-6b=2\end{cases}}\)
Trừ 2 vế PT
=> 7b = 1
=> b = 1/7
=> a = 10/7
=>
\(\hept{\begin{cases}x+y=\frac{7}{10}\\x-y=7\end{cases}}\)
<=>
\(\hept{\begin{cases}x=\frac{77}{20}\\y=-\frac{63}{20}\end{cases}}\)
Cô làm tiếp nhé. \(\hept{\begin{cases}u+v=5\\uv=8-m\end{cases}\Rightarrow\hept{\begin{cases}u=5-v\\\left(5-v\right)v=8-m\left(1\right)\end{cases}}}\)
\(\left(1\right)\Rightarrow v^2-5v+8-m=0\left(2\right)\)
Để phương trình (2) có nghiệm thực thì \(\Delta\ge0\Leftrightarrow5^2-4\left(8-m\right)\ge0\Rightarrow4m-7\ge0\Rightarrow m\ge\frac{7}{4}\).
Đặt : \(\hept{\begin{cases}u=x+\frac{1}{x}\\v=y+\frac{1}{y}\end{cases}}\)Điều kiện : \(\orbr{\begin{cases}u\ge2\\u\le2\end{cases}}\)và \(\orbr{\begin{cases}v\ge2\\v\le2\end{cases}}\)
Tách : \(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)^3-3.x\frac{1}{x}\left(x+\frac{1}{x}\right)=u^3-3u\)
Tương tự : \(y^3+\frac{1}{x^3}=v^3-3v\)
PT trên trở thành : \(\hept{\begin{cases}u+v=5\\u^3-3u+v^3-3v=15m-10\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}u+v=5\\\left(u+v\right)^3-3uv\left(u+v\right)-3\left(u+v\right)=15m-10\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}u+v=5\\uv=8-m\end{cases}}\)
Cô ơi e làm được đến đây cô làm tiếp dùm e nha