Cho 2015 số nguyên dương a1,a2,a3,...a2015 thỏa mãn điều kiện \(\frac{1}{\sqrt{a_1}}\) + \(\frac{1}{\sqrt{a_2}}\) + \(\frac{1}{\sqrt{a_3}}\) + ...+ \(\frac{1}{\sqrt{a_{2015}}}\) lớn hơn hoặc bằng 89. CMR: trong 2015 số nguyên dương đó, luôn tồn tại ít nhất 2 số bằng nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(a_1,a_2,....,a_{2015}\)là các số nguyên dương, để không mất tính tổng quát ta giả sử \(a_1\le a_2\le a_3\le.....\le a_{2015}\)Suy ra
\(a_1\ge1,a_2\ge2,.......,a_{2015}\ge2015\) Vậy ta có \(A=\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+..........+\frac{1}{\sqrt{a_{2015}}}\le\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+.....+\frac{1}{\sqrt{2015}}=B\)
\(B=\frac{2}{\sqrt{1}+\sqrt{1}}+\frac{2}{\sqrt{2}+\sqrt{2}}+.....+\frac{2}{\sqrt{2015}+\sqrt{2015}}<1+\frac{2}{\sqrt{2}+\sqrt{1}}+\frac{2}{\sqrt{3}+\sqrt{2}}+.....+\frac{2}{\sqrt{2015}+\sqrt{2014}}=C\)
Ta có trục căn thức ở mẫu của \(C\)Ta có: \(C=2\left(\sqrt{2015}-\sqrt{2014}+\sqrt{2014}-\sqrt{2013}+.....+\sqrt{2}-\sqrt{1}\right)+1=2\left(\sqrt{2015}-\sqrt{1}\right)+1\)
Mà: \(C=2\left(\sqrt{2015}-\sqrt{1}\right)+1<89\)Trái với giả thiết Vậy tồn tại ít nhất 2 số bằng nhau trong 2015 số nguyên dương đó
trong sách nâng cao và phất triển 1 số chuyên đề toàn 9 tập 1 có đó
giả sử trong 36 số tự nhiên đã cho, không có hai số nào bằng nhau. Không mất tính tổng quát, giả sử :
\(a_1< a_2< ...< a_{36}\)
Suy ra : \(a_1\ge1;a_2\ge2;...;a_{36}\ge36\)
\(\Rightarrow\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{36}}}\le\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{36}}\)( 1 )
Ta có : \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{36}}=1+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{2\sqrt{36}}\)
\(< 1+\frac{2}{\sqrt{2}+\sqrt{1}}+\frac{2}{\sqrt{3}+\sqrt{2}}+...+\frac{2}{\sqrt{36}+\sqrt{35}}\)
\(=1+2\left(\sqrt{2}-\sqrt{1}\right)+2\left(\sqrt{3}-\sqrt{2}\right)+...+2\left(\sqrt{36}-\sqrt{35}\right)\)
\(=2\left(\sqrt{36}-\sqrt{1}\right)+1=11\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{36}}}< 11\)( trái với giả thiết )
\(\Rightarrow\)tồn tại 2 số bằng nhau trong 36 số tự nhiên đã cho
Phản chứng: giả sử trong 361 số đó, không có 2 số nào bằng nhau
Không mất tính tổng quát, giả sử:
\(0< a_1< a_2< ...< a_{361}\)
\(\Rightarrow\left\{{}\begin{matrix}a_1\ge1\\a_2\ge2\\...\\a_{361}\ge361\end{matrix}\right.\)
Đặt \(S=\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+...+\dfrac{1}{\sqrt{a_{361}}}\)
\(\Rightarrow S\le\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{361}}\)
\(\Rightarrow S\le1+2\left(\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}+...+\dfrac{1}{2\sqrt{361}}\right)\)
\(\Rightarrow S< 1+2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{360}+\sqrt{361}}\right)\)
\(\Rightarrow S< 1+2\left(\dfrac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}+\sqrt{1}\right)\left(\sqrt{2}-\sqrt{1}\right)}+...+\dfrac{\sqrt{361}-\sqrt{360}}{\left(\sqrt{361}+\sqrt{360}\right)\left(\sqrt{361}-\sqrt{360}\right)}\right)\)
\(\Rightarrow S< 1+2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{361}-\sqrt{360}\right)\)
\(\Rightarrow S< 1+2\left(\sqrt{361}-1\right)=37\)
Trái với giả thiết \(S=37\)
\(\Rightarrow\) Điều giả sử là sai hau trong 361 số tự nhiên đó tồn tại ít nhất 2 số bằng nhau
chứng minh = phản chứng . giả sử trong 25 số tự nhiên ko có 2 số nào bằng nhau . ko mất tính tổng quát , giả sử\(a_11,a_22,..,a_{25}25\)
thế thì
\(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{25}}}=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+..+\frac{1}{\sqrt{25}}\)
ta lại có \(\frac{1}{\sqrt{25}}+..+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{1}}=\frac{1}{\sqrt{25+\sqrt{25}}}+\frac{1}{\sqrt{2+\sqrt{2}}}+1\)
\(< \frac{2}{\sqrt{24+\sqrt{24}}}+.+\frac{2}{\sqrt{2+\sqrt{2}}}+1\)
\(=2\left(\sqrt{25}-\sqrt{24}+\sqrt{24}-\sqrt{23}+...+\sqrt{2}-\sqrt{1}\right)+1=2\left(\sqrt{25}-\sqrt{1}\right)+1=9\left(2\right)\)
từ (1) zà 2 suy ra \(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+..+\frac{1}{\sqrt{a_{25}}}< 9\)trái zới giả thiết , suy ra ko tồn tại 2 số nào = nhau trong 25 số
a) A = \(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
Nhân \(\frac{1}{7^2}\)với A .Ta được :
A .\(\frac{1}{7^2}\)= \(\frac{1}{7^4}-\frac{1}{7^6}+\frac{1}{7^8}-...-\frac{1}{7^{98}}+\frac{1}{7^{100}}-\frac{1}{7^{102}}\)
Ta có : \(\frac{1}{7^2}.A+A=\frac{1}{49}-\frac{1}{7^{102}}\)
\(\Rightarrow\frac{50}{49}.A=\frac{1}{49}-\frac{1}{7^{102}}\)
\(\Rightarrow A.\left(\frac{1}{49}-\frac{1}{7^{102}}\right).\frac{49}{50}< \frac{1}{50}\left(đpcm\right)\)
b)Giả sử a1 >a2 > a3 ...> a2015 nên a1 > a2015
Theo đề ra ta có : \(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2015}}< \frac{1}{2016}+\frac{1}{2015}+...+1=A\)
A< \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{8}+\left(\frac{1}{8}+\frac{1}{8}+...+\frac{1}{8}\right)\)có 2007 số \(\frac{1}{8}\)
Mà \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{8}+\left(\frac{1}{8}+\frac{1}{8}+...+\frac{1}{8}\right)< 1+1+...+\frac{2018}{8}\)
Giả sử trong 2015 số nguyên dương đã cho không có số nào bằng nhau .
Và a1 < a2 < a3 < ... < a2015
Ta có : \(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_{2015}}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\)
\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2011}}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1+1007=1008\)
=> Giả sử là sai => ít nhất 2 trong 2015 số nguyên dương đã cho bằng nhau ( đpcm )