10+10+10+10+10+10
giút gọn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{10^{29}+10^{10}}{10^{30}+10^{10}}=\frac{10^{10}.\left(10^{19}+1\right)}{10^{10}.\left(10^{20}+1\right)}=\)\(\frac{10^{19}+1}{10^{20}+1}\)
\(\Leftrightarrow10A=1+\frac{9}{10^{20}+1}\)
\(B=\frac{10^{30}+10^{10}}{10^{31}+10^{10}}=\frac{10^{10}.\left(10^{20}+1\right)}{10^{10}.\left(10^{21}+1\right)}=\frac{10^{20}+1}{10^{21}+1}\)
\(\Leftrightarrow10B=1+\frac{9}{10^{21}+1}\)
Vì \(1+\frac{9}{10^{20}+1}>1+\frac{9}{10^{21}+1}\Rightarrow10A>10B\Leftrightarrow A>B\)
\(\frac{2^{10}.3^{10}-2^{10}.3^9}{2^9.3^{10}}\)
\(=\frac{2^{10}\left(3^{10}-3^9\right)}{2^9.3^{10}}\)
\(=\frac{2\left(3^{10}-3^9\right)}{3^{10}}\)
\(=\frac{2.\left(59049-19683\right)}{59049}\)
\(=\frac{2.39366}{59049}\)
\(=\frac{78732}{59049}\)
\(10A=\frac{10\left(10^{29}+10^{10}\right)}{10^{30}+10^{10}}=\frac{10^{30}+10^{11}}{10^{30}+10^{10}}=1+\frac{10^{11}-10^{10}}{10^{30}+10^{10}}\)
\(10B=\frac{10\left(10^{30}+10^{10}\right)}{10^{31}+10^{10}}=\frac{10^{31}+10^{11}}{10^{31}+10^{10}}=1+\frac{10^{11}-10^{10}}{10^{31}+10^{10}}\)
\(10^{30}+10^{10}< 10^{31}+10^{10}\Rightarrow\frac{10^{11}-10^{10}}{10^{30}+10^{10}}>\frac{10^{11}-10^{10}}{10^{31}+10^{10}}\)
\(\Rightarrow10A=1+\frac{10^{11}-10^{10}}{10^{30}+10^{10}}>10B=1+\frac{10^{11}-10^{10}}{10^{31}+10^{10}}\)
\(\Rightarrow A>B\)
10 x 10 x 10 x 10 x10 x 10 x ...... x 10 x 10 = 990 000 000 000
= 100000000 x X = 990 000 000 000
X = 990 000 000 000 : 100000000
X = 9900
a) \(10^n+1-6\cdot10^n=\left(1-6\right)10^n+1=-5\cdot10^n+1\)
b) \(90\cdot10^n-10^2-2+10^n+1=\left(90-1+1\right)\cdot10^n-2+1=90\cdot10^n-1\)
c) \(2,5\cdot56^n-3=\frac{5}{2}\cdot56^n-3\)
\(\frac{2^{10}.3^{10}-2^{10}.3^9}{2^9.3^{10}}=\frac{2^{10}.3^9\left(3-1\right)}{2^9.3^{10}}=\frac{2^{11}.3^9}{2^9.3^{10}}=\frac{4}{3}\)
Lời giải:
Gọi biểu thức là $A$
\(A=\frac{2^{10}.3^8+5.(2^2)^5.3^8}{2^{10}.(3^3)^3-2^{10}.(3^2)^4}=\frac{2^{10}.3^8+5.2^{10}.3^8}{2^{10}.3^9-2^{10}.3^{8}}\)
\(=\frac{2^{10}.3^8(1+5)}{2^{10}.3^8(3-1)}=\frac{6}{2}=3\)
\(B=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(\Rightarrow B=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(\Rightarrow\frac{3B}{5}=\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{25.28}\)
\(\Rightarrow\frac{3B}{5}=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\)
\(\Rightarrow\frac{3B}{5}=\frac{1}{4}-\frac{1}{28}\)
\(\Rightarrow\frac{3B}{5}=\frac{3}{14}\)
\(\Rightarrow B=\frac{3}{14}.\frac{5}{3}\)
\(\Rightarrow B=\frac{5}{14}\)
Vậy \(B=\frac{5}{14}\)
minh k 2 rồi nha ko nói đùa đâu thiệt đók mình 3 nha
kết quả là
60
ai k mình 2 cái mình k cho 3 cái