K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{5\sqrt{x}-8}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-\sqrt{x}-5\sqrt{x}+8}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-4\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}-4}{\sqrt{x}}\)

2: \(P=A\cdot B=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

\(\Leftrightarrow P-2=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}>0\)

=>P>2

17 tháng 9 2021

\(a,B=\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{5}{\sqrt{x}-1}+\dfrac{4}{x-1}\left(x\ge0;x\ne1\right)\\ B=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)+5\left(\sqrt{x}+1\right)+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ B=\dfrac{x+2\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x+7\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+6}{\sqrt{x}-1}\)

 

b: Ta có: \(B=\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{5}{\sqrt{x}-1}+\dfrac{4}{x-1}\)

\(=\dfrac{x+2\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+6}{\sqrt{x}-1}\)

a: ĐKXĐ: x>=0; x<>4

\(Q=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+2\sqrt{x}\left(\sqrt{x}+2\right)-3x-4}{x-4}\cdot\dfrac{\sqrt{x}-2+2}{2}\)

\(=\dfrac{x-2\sqrt{x}+2x+4\sqrt{x}-3x-4}{x-4}\cdot\dfrac{\sqrt{x}}{2}\)

\(=\dfrac{2\sqrt{x}-4}{x-4}\cdot\dfrac{\sqrt{x}}{2}=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

b: \(M=P\cdot Q=\dfrac{\sqrt{x}}{\sqrt{x}+2}\cdot\dfrac{1-5\sqrt{x}}{\sqrt{x}+1}=\dfrac{\sqrt{x}\left(1-5\sqrt{x}\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\)

\(M\left(M-1\right)=\dfrac{\sqrt{x}\left(1-5\sqrt{x}\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-5x-x-3\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(1-5\sqrt{x}\right)\left(-6x-2\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)^2\cdot\left(\sqrt{x}+1\right)^2}\)

\(=\dfrac{\sqrt{x}\left(5\sqrt{x}-1\right)\left(6x+2\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}+1\right)^2}\)

TH1: M>=căn M

=>M^2>=M

=>M^2-M>=0

=>5*căn x-1>=0

=>x>=1/25 và x<>4

TH2: M<căn M

=>5căn x-1<0

=>x<1/25

Kết hợp ĐKXĐ, ta được: 0<=x<1/25

18 tháng 9 2023

\(a,B=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2}{\sqrt{x}+3}-\dfrac{9\sqrt{x}-3}{x+\sqrt{x}-6}\left(x>0;x\ne6\right)\\ =\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2}{\sqrt{x}+3}-\dfrac{9\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\dfrac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\dfrac{9\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{x+3\sqrt{x}+\sqrt{x}+3+2\sqrt{x}-4-9\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{x-3\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\\)

\(=\dfrac{x-\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)

`b,` Tớ tính mãi ko ra, xl cậu nha=')

 

 

 

19 tháng 9 2023

b) Xét hiệu:

\(\dfrac{\sqrt{x}-1}{\sqrt{x}+3}-3\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}-\dfrac{3\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\)

\(=\dfrac{\sqrt{x}-1-3\sqrt{x}-9}{\sqrt{x}+3}\)

\(=\dfrac{-2\sqrt{x}-10}{\sqrt{x}+3}\)

\(=\dfrac{-2\left(\sqrt{x}+5\right)}{\sqrt{x}+3}\)

Mà: \(x>0\Rightarrow\left\{{}\begin{matrix}\sqrt{x}+5\ge5>0\\\sqrt{x}+3\ge3>0\end{matrix}\right.\)

\(\Rightarrow\dfrac{\sqrt{x}+5}{\sqrt{x}+3}>0\) 

\(\Rightarrow\dfrac{-2\left(\sqrt{x}+5\right)}{\sqrt{x}+3}< 0\)

Vậy: \(\dfrac{\sqrt{x}-1}{\sqrt{x}+3}< 3\forall x>0\)

(giúp cậu nó nha) 

Sửa đề: loading...

loading...

loading...

7 tháng 11 2021

\(a,A=\dfrac{2\cdot2-4}{2-1}=0\\ b,B=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ B=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ c,AB=\dfrac{2\sqrt{x}-4}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{2\sqrt{x}-4}{\sqrt{x}+1}=\dfrac{5\left(\sqrt{x}+1\right)-3\left(\sqrt{x}+3\right)}{\sqrt{x}+1}\\ AB=5-\dfrac{3\left(\sqrt{x}+3\right)}{\sqrt{x}+1}\)

Vì \(\dfrac{3\left(\sqrt{x}+3\right)}{\sqrt{x}+1}>0\) nên \(AB< 5\)

7 tháng 11 2021

a. \(x=4\Rightarrow A=\dfrac{2.\sqrt{4}-4}{\sqrt{4}-1}=0\)

b. \(\Rightarrow B=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-\left(6\sqrt{x}-4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Rightarrow B=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Rightarrow B=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Rightarrow B=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Rightarrow B=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

 

27 tháng 8 2021

a) \(P=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right).\left(\dfrac{1}{2\sqrt{x}}-\dfrac{\sqrt{x}}{2}\right)^2\left(đk:x>0\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\left(\dfrac{1-x}{2\sqrt{x}}\right)^2=\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}.\dfrac{\left(x-1\right)^2}{4x}=\dfrac{-4\sqrt{x}\left(x-1\right)}{4x}=\dfrac{1-x}{\sqrt{x}}\)

b) \(P-\left(-2\sqrt{x}\right)=\dfrac{1-x}{\sqrt{x}}+2\sqrt{x}=\dfrac{1-x+2x}{\sqrt{x}}=\dfrac{1+x}{\sqrt{x}}>0\)

\(\Rightarrow P>-2\sqrt{x}\)

27 tháng 8 2021

a, ĐK: \(x\ge0;x\ne1\)

\(P=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\left(\dfrac{1}{2\sqrt{x}}-\dfrac{\sqrt{x}}{2}\right)^2\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\dfrac{\left(2-2x\right)^2}{16x}\)

\(=\dfrac{-4\sqrt{x}}{x-1}.\dfrac{4\left(x-1\right)^2}{16x}\)

\(=-\dfrac{x-1}{\sqrt{x}}\)

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Lời giải:
ĐKXĐ: $x\geq 0; x\neq 1; x\neq 25$

a) 

\(A=\frac{4\sqrt{x}}{\sqrt{x}-5}:\left[\frac{(\sqrt{x}-2)(\sqrt{x}+2)+\sqrt{x}-1}{(\sqrt{x}-1)(\sqrt{x}+2}+\frac{5-2\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+2)}\right]\)

\(=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{x-4+\sqrt{x}-1+5-2\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+2)}\)

\(=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+2)}=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{\sqrt{x}}{\sqrt{x}+2}=\frac{4\sqrt{x}}{\sqrt{x}-5}.\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{4(\sqrt{x}+2)}{\sqrt{x}-5}\)

b) Tại $x=81$ thì $\sqrt{x}=9$.

Khi đó: $A=\frac{4(9+2)}{9-5}=11$

c) $A< 4\Leftrightarrow \frac{\sqrt{x}+2}{\sqrt{x}-5}< 1$

$\Leftrightarrow \frac{7}{\sqrt{x}-5}< 0\Leftrightarrow \sqrt{x}-5< 0$

$\Leftrightarrow 0\leq x< 25$. Kết hợp với ĐKXĐ suy ra: $0\leq x< 25; x\neq 1$

1 tháng 4 2021

Hỗ trợ em nhé cô