Tìm a biết
Đồng thời x^2-x+b=0 ( nghiệm y1, y2)
Và x^2-97x+a=0 (nghiệm y1^4, y2^4)
( số 1,2 trong y1,y2 là số thứ tự)
Giỏi nhảy vào
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Vì $x,y$ tỉ lệ thuận nên đặt $y=kx$. Ta có:
$y_1=kx_1$ hay $\frac{1}{2}=k.2\Rightarrow k=\frac{1}{4}$. Vậy $y=\frac{1}{4}x$
$y_2=kx_2=\frac{1}{4}x_2=\frac{1}{4}.3=\frac{3}{4}$
b.
Vì $x,y$ tỉ lệ nghịch nên đặt $xy=k$.
$x_1y_1=k=x_2y_2$
$\Leftrightarrow \frac{1}{2}.4=x_2.(-4)$
$\Leftrightarrow x_2=\frac{-1}{2}$
x và y đại lượng tỉ lệ nghịch
x1x2=y2y1hay x1 và x2 ta có:
23=y2y1⇒y13=y22
Mà y12+y22=52
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
y13=y22=y12+y2232+22=5213=4
⇒y13=4⇒y1=12
⇒y22=4⇒y2=8
Vì tỉ số giữa hai nghiệm khác 1 nên pt có hai nghiệm pb
\(\Rightarrow\Delta=4m^2-4\left(2m-1\right)>0\)
\(\Leftrightarrow m\ne1\)
Áp dụng viet có: \(\left\{{}\begin{matrix}y_1+y_2=2m\\y_1y_2=2m-1\end{matrix}\right.\)
Giả sử \(y_1=2y_2\)
Có hệ: \(\left\{{}\begin{matrix}y_1+y_2=2m\\y_1=2y_2\\y_1y_2=2m-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y_1=\dfrac{4m}{3}\\y_2=\dfrac{2m}{3}\\y_1y_2=2m-1\end{matrix}\right.\)\(\Rightarrow\dfrac{4m}{3}.\dfrac{2m}{3}=2m-1\)
\(\Leftrightarrow8m^2-18m+9=0\) \(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=\dfrac{3}{4}\end{matrix}\right.\)(tm)