cho tam giac ABC, đường cao BD và CE cắt nhau tại H. Gọi M và I lần lượt là trung điểm của BC và AH. C/M: IM vuông góc ED . Mọi người giúp em với em cần trước 1h nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC(ΔBAC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔADB=ΔAEC(Cạnh huyền-góc nhọn)
Suy ra: AD=AE(Hai cạnh tương ứng)
hay A nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: AE+EB=AB(E nằm giữa A và B)
AD+DC=AC(D nằm giữa A và C)
mà AE=AD(cmt)
và AB=AC(ΔABC cân tại A)
nên EB=DC
Xét ΔEBH vuông tại E và ΔDCH vuông tại D có
EB=DC(cmt)
\(\widehat{EBH}=\widehat{DCH}\)(ΔABD=ΔACE)
Do đó: ΔEBH=ΔDCH(Cạnh góc vuông-góc nhọn kề)
Suy ra: HE=HD(Hai cạnh tương ứng)
hay H nằm trên đường trung trực của ED(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AH là đường trung trực của ED
hay AH\(\perp\)ED(đpcm)
a) Xét tg BCD vuông tại D có DM=BM=CM
Tg BEC vuông tại E có EM=BM=MC (t/c đường trung tuyến ứng với cạnh huyền của tg vuông)
=> EM=DM
=> Tg EDM vuông tại M
b) Xét tg AHD vuông D có : AI=ID \(\Rightarrow ID=\frac{AH}{2}\)
Tg AEH vuông E có : AI=IH \(\Rightarrow EI=\frac{AH}{2}\)
=> ID=IE
Lại có EM=DM (cmt)
=> IM là đg trung trực của ED
c) Tg ABC có : \(BD\perp AC,CE\perp AB\Rightarrow AH\perp BC\)(t/c 3 đường cao)
AH cắt BC tại O
Xét tg AOC vuông tại O
\(\Rightarrow\widehat{OAC}+\widehat{OCA}=90^o\)
Mà : \(\widehat{OAC}=\widehat{IDA}\)(tg AID cân I do AI=ID)
\(\widehat{OCA}=\widehat{CDM}\)(tg DMC cân M do MD=MC)
\(\Rightarrow\widehat{CDM}+\widehat{IDA}=90^o\)
\(\Rightarrow\widehat{IDM}=180^o-\left(\widehat{CDM}+\widehat{IDA}\right)=180^o-90^o=90^o\)
- Tương tự cũng tính được \(\widehat{ IEM}=90^o\)
#H