Khẳng định nào đúng ? Cho tam giác ABC = tam giác MNQ có A=50°, N=60°, Q= ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí sin trong tam giác: a sin A = 2 R
Suy ra: R = a 2. sin A = 30 2. sin 60 0 = 10 3
ĐÁP ÁN A
a) Đúng. Khi đó, ∆ABC = ∆FDE ( g.c.g)
b) Sai;
c) Đúng.
+)Vì ta có: ∠A + ∠B +∠C = 180º ( tổng ba góc của tam giác).
Và ∠D + ∠E + ∠F = 180º ( tổng ba góc của tam giác)
+) Lại có; ∠B = ∠D; ∠C = ∠E nên ∠A = ∠F
+) Kết hợp giả thiết suy ra: ∆ABC = ∆ FDE ( g.c.g)
Nếu G là trong tâm tam giác ABC thì
G A → + G B → + G C → = 0 → ⇔ A G → + B G → + C G → = 0 → ⇔ A G → + B G → + C G → = 0 → = 0
Đáp án C
Ta có: b . cos C + c . cos B = b . a 2 + b 2 − c 2 2 a b + c . c 2 + a 2 − b 2 2 a c
= a 2 + b 2 − c 2 2 a + c 2 + a 2 − b 2 2 a = a 2 + b 2 − c 2 + c 2 + a 2 − b 2 2 a = 2 a 2 2 a = a
ĐÁP ÁN B
* Diện tích tam giác ABC là: S = 1 2 b c . sin A ⇒ 4 S = 2 b c sin A
cot A = cosA sin A = b 2 + c 2 − a 2 2 b c sin A = b 2 + c 2 − a 2 2 b c . s i n A = b 2 + c 2 − a 2 4 S
* Tương tự, ta có: cot B = a 2 + c 2 − b 2 4 S ; cot C = a 2 + b 2 − c 2 4 S
* Do đó,
cot A + cot B + cot C = b 2 + c 2 − a 2 4 S + a 2 + c 2 − b 2 4 S + a 2 + b 2 − c 2 4 S = a 2 + b 2 + c 2 4 S
ĐÁP ÁN B
Trong các khẳng định sau:
- Khẳng định c) là đúng.
- Khẳng định a) ; b) là sai.
Theo định lí sin trong tam giác ta có: a sin A = 2 R ⇒ a = 2 R . sin A
Tương tự, b = 2RsinB; c= 2R.sin C
Theo đầu bài:
a + b =2c ⇒ 2Rsin A + 2Rsin B = 4Rsin C ⇒ sin A + sin B = 2sin C.
ĐÁP ÁN C
góc Q= 180-(50+60)=70 độ