K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2016

Ta có công thức sau: 
1² + 2² + 3² + .... + n² = [ n(n+1)(2n+1) ]/6 (*) ∀ n ∈ N* 

Chứng minh ( bằng phương pháp quy nạp) 
Với n = 1 thì 1² + 2² + 3² + .... + n² = 1² = 1 
và [ n(n+1)(2n+1) ]/6 = (1.2.3)/6 = 1 
=> (*) đúng với n = 1 

Giả sử (*) đúng với n = k ∈ N*. => ta có:1² + 2² + 3² + .... + k² = [ k(k+1)(2k+1) ]/6 

Ta phải c/m (*) đúng với n = k + 1. Hay ta phải chứng minh 

1² + 2² + 3² + .... + k² + (k+1)² = [ (k+1)(k+2)(2k+3) ] / 6 (chỗ này mình làm tắt) 

Ta có : 1² + 2² + 3² + .... + k² + (k+1)² = [ 1² + 2² + 3² + .... + k² ] + (k+1)² 

= [ k(k+1)(2k+1) ]/6 + (k+1)² = [ k(k+1)(2k+1) + 6(k+1)² ]/6 

= [ (k+1)(2k² + k) + 6(k+1)² ]/6 = [ (k+1)(2k² + k + 6k + 6) ]/6 

= [ (k+1)(2k² + 7k + 6) ]/6 = [ (k+1)(2k² + 4k + 3k + 6) ]/6 

= [ (k+1)(k+2)(2k+3) ]/6. => theo nguyên lý quy nạp thì (*) đúng với ∀ n ∈ N* 

Áp dụng với n = 1974 ta được: 

1² + 2² + 3² + .... + 1974² = ( 1974.1975.3949 )/6 = 2565961475 

Khai căn 2565961475 thì thấy kết quả không phải số nguyên => 2565961475 không phải số chính phương => biểu thức đã cho không phải số chính phương. 

23 tháng 8 2016

Phương pháp quy nạp là phương pháp thế nào bạn? Giải thích rõ giùm mình với. Cảm ơn <3

30 tháng 7 2016

Gọi dãy số đó là: n^2; (n+1)^2; (n+2)^2;...;(n+1973)^2 (n>=0)

Ta xét tổng của dãy trên:

       \(n^2+\left(n+1\right)^2+\left(n+2\right)^2+...+\left(n+1973\right)^2\)

<=>\(\left[n^2+\left(n+1\right)^2+\left(n+3\right)^2\right]+....+\left[\left(n+1971\right)^2+\left(n+1972\right)^2+\left(n+1973\right)^2\right]\)

Dễ thấy (n; n+1; n+3);....;(n+1971;n+1972;n+1973) là nhóm 3 số tự nhiên liên tiếp

Do đó, luôn có 1 số chia hết cho 3. Tổng 2 số còn lại chia 3 dư 2. Do đó tổng của dãy trên trở thành:

\(\left(3k_1+2\right)+\left(3k_2+2\right)+...+\left(3k_{658}+2\right)\)

\(3.\left(k_1+k_2+k_3+...+k_{658}\right)+2.658\)

=\(3.\left(k_1+k_2+k_3+...+k_{658}\right)+1316\)chia 3 dư 2

Mà một số chính phương khi chia 3 dư 0 hoac 1

Vậy tổng trên không thể là số chính phương

30 tháng 7 2016

hay ket ban voi luffy

26 tháng 7 2016

mau lên các bạn!

18 tháng 6 2017

Search trước khi đăng nhs bn!

Câu hỏi của Trần Trương Ngọc Hân - Toán lớp 8 - Học toán với OnlineMath

18 tháng 6 2017

Uk .cảm ơm bạn nhahehe

4 tháng 11 2015

Cau hoi tuong tu nhe 

Ban chi can doi so 5 thanh so 3 roi lam 

Tick nha

2 tháng 1 2018

1, Gọi 3 số chính phương của 3 số tự nhiên liên tiếp lần lượt là : (a-1)^2 ; a^2 ; (a+1)^2

Xét : (a-1)^2+a^2+(a+1)^2 = a^2-2a+1+a^2+a^2+2a+1 = 3a^2+2 chia 3 dư 2

=> (a-1)^2+a^2+(a+1)^2 ko phải là số chính phương

Tk mk nha

25 tháng 2 2018

Óc Chó Là Có Thật

25 tháng 2 2018

Gọi 5 số tự nhiên liên tiếp đó là n - 2 ; n - 1 ; n ; n + 1 ; n + 2 ( n thuộc N , n > 2 )

Ta có : \(\left(n-2\right)^2+\left(n-1\right)^2+n^2+\left(n+1\right)^2+\left(n+2\right)^2=5.\left(n^2+n\right)\)

Vì \(n^2\)không thể tận cùng là 3 hoặc 8 nên \(n^2+2\)không chia hết cho 5

\(\Rightarrow\)\(5.\left(n^2+2\right)\)không là số chính phương hay tổng các bình phương của 5 số tự nhiên liên tiếp không phải là 1 số chính phương ( đpcm )